The Role of Nitric Oxide in Enhancing Erythropoiesis in Sickle Cell Disease

Authors

DOI:

https://doi.org/10.22270/ijmspr.v11i3.151

Keywords:

Nitric oxide, erythropoiesis, sickle cell disease, hemoglobinopathies, vascular health

Abstract

Sickle cell disease (SCD) is a hereditary blood disorder characterized by the production of abnormal hemoglobin, leading to the sickling of red blood cells, vaso-occlusion, hemolysis, and chronic organ damage. One of the key challenges in SCD is impaired erythropoiesis, which results from the continuous destruction of sickled red blood cells and a compensatory increase in red blood cell production. Nitric oxide (NO), a critical endothelial signaling molecule, has been identified as a key regulator of erythropoiesis. NO influences the differentiation, proliferation, and survival of erythroid progenitor cells, thereby playing a vital role in maintaining healthy red blood cell production. In SCD, NO bioavailability is often reduced due to the hemolysis of red blood cells, which releases cell-free hemoglobin that scavenges NO. This depletion of NO further exacerbates the anemia and contributes to vascular dysfunction in SCD patients. Restoring NO availability may therefore be crucial for improving erythropoiesis and reducing the anemia that is characteristic of SCD. Research has shown that NO can enhance the expression of transcription factors involved in erythropoiesis and increase the production of fetal hemoglobin (HbF), which has a protective effect against sickling.

Keywords: Nitric oxide, erythropoiesis, sickle cell disease, hemoglobinopathies, vascular health

Author Biography

Emmanuel Ifeanyi Obeagu , Department of Biomedical and Laboratory Science, Africa University, Zimbabwe.

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe.

References

Gupta A. Sickle Cell Anemia and Related Hemoglobinopathies. InDecision Making Through Problem Based Learning in Hematology: A Step-by-Step Approach in patients with Anemia 2024: 269-289. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8933-1_21

Hassan MS, Nasrin T, Mahalka A, Hoque M, Ali S. A perspective on the genesis, diagnostics, and management of sickle cell disease. Egyptian Journal of Medical Human Genetics. 2024; 25(1):150. https://doi.org/10.1186/s43042-024-00623-1

Rajput HS, Kumari M, Talele C, Sajan C, Saggu V, Hadia R. Comprehensive Overview Of Sickle Cell Disease: Global Impact, Management Strategies, And Future Directions. Journal of Advanced Zoology. 2024; 45(1). https://doi.org/10.53555/jaz.v45i1.3390

Obeagu EI. Role of Autophagy in Modulating Oxidative Stress in Sickle Cell Disease: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(8):38-46. https://doi.org/10.23880/hij-16000247

Obeagu EI. Redox Regulation of Hemoglobin in Sickle Cell Disease: A Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(8):13-9.

Obeagu EI, Bunu UO, Obeagu GU, Habimana JB. Antioxidants in the management of sickle cell anaemia: an area to be exploited for the wellbeing of the patients. Int Res Med Health Sci. 2023 Sep 11;6:12-7.

Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@ GI): feasibilities and challenges. Science of The Total Environment. 2024:172883. https://doi.org/10.1016/j.scitotenv.2024.172883 PMid:38697528

Lin W, Lv X, Wang Q, Li L, Zou G. Nitrogen concentration dependent optical defects transition in single crystal diamond through low pressure high temperature annealing. Vacuum. 2025:114329. https://doi.org/10.1016/j.vacuum.2025.114329

Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clinical & Experimental Pharmacology & Physiology. 2007 Sep 1;34(9). https://doi.org/10.1111/j.1440-1681.2007.04639.x PMid:17645642

Dijkmans T, Djokic MR, Van Geem KM, Marin GB. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC× GC-FID/SCD/NCD/TOF-MS. Fuel. 2015; 140:398-406. https://doi.org/10.1016/j.fuel.2014.09.055

Muehle M, Asmussen J, Becker MF, Schuelke T. Extending microwave plasma assisted CVD SCD growth to pressures of 400 Torr. Diamond and Related Materials. 2017; 79:150-163. https://doi.org/10.1016/j.diamond.2017.09.013

Obeagu EI, Obeagu GU. Immunization strategies for individuals with sickle cell anemia: A narrative review. Medicine. 2024; 103(38):e39756. https://doi.org/10.1097/MD.0000000000039756 PMid:39312357 PMCid:PMC11419550

Obeagu EI. Strategies for reducing child mortality due to sickle cell disease in Uganda: a narrative review. Annals of Medicine and Surgery.:10-97.

Obeagu EI. Erythropoeitin in sickle cell anaemia: a review. International Journal of Research Studies in Medical and Health Sciences. 2020;5(2):22-8. https://doi.org/10.22259/ijrsmhs.0502004

Obeagu EI, Obeagu GU. Malnutrition in sickle cell anemia: prevalence, impact, and interventions: a review. Medicine. 2024 May 17;103(20):e38164. https://doi.org/10.1097/MD.0000000000038164 PMid:38758879 PMCid:PMC11098235

Quemada M, Delgado A, Mateos L, Villalobos FJ. Nitrogen fertilization I: The nitrogen balance. InPrinciples of agronomy for sustainable agriculture 2024: 377-401. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-69150-8_26

Krug EC, Winstanley D. The need for comprehensive and consistent treatment of the nitrogen cycle in nitrogen cycling and mass balance studies: I. Terrestrial nitrogen cycle. Science of the total environment. 2002; 293(1-3):1-29. https://doi.org/10.1016/S0048-9697(01)01133-0 PMid:12109464

Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/nitrogen metabolic balance: lessons from cyanobacteria. Trends in plant science. 2018; 23(12):1116-1130. https://doi.org/10.1016/j.tplants.2018.09.008 PMid:30292707

Enwonwu CO, Xu XX, Turner E. Nitrogen metabolism in sickle cell anemia: free amino acids in plasma and urine. The American journal of the medical sciences. 1990; 300(6):366-371. https://doi.org/10.1097/00000441-199012000-00005 PMid:2264574

Borel MJ, Buchowski MS, Turner EA, Peeler BB, Goldstein RE, Flakoll PJ. Alterations in basal nutrient metabolism increase resting energy expenditure in sickle cell disease. American Journal of Physiology-Endocrinology and Metabolism. 1998; 274(2):E357-364. https://doi.org/10.1152/ajpendo.1998.274.2.E357 PMid:9486169

Jackson AA. The use of stable isotopes to study nitrogen metabolism in homozygous sickle cell disease. InGenetic factors in nutrition. 1984: 297-315. Academic Press, New York. https://doi.org/10.1016/B978-0-12-715950-8.50024-X PMCid:PMC7131065

Schnog JJ, Jager EH, van der Dijs FP, Duits AJ, Moshage H, Muskiet FD, Muskiet FA. Evidence for a metabolic shift of arginine metabolism in sickle cell disease. Annals of Hematology. 2004; 83:371-375. https://doi.org/10.1007/s00277-004-0856-9 PMid:15054669

Darghouth D, Koehl B, Madalinski G, Heilier JF, Bovee P, Xu Y, Olivier MF, Bartolucci P, Benkerrou M, Pissard S, Colin Y. Pathophysiology of sickle cell disease is mirrored by the red blood cell metabolome. Blood, The Journal of the American Society of Hematology. 2011; 117(6):e57-66. https://doi.org/10.1182/blood-2010-07-299636 PMid:21135259

Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, Hazen SL, Vichinsky EP, Morris SM, Gladwin MT. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. Jama. 2005; 294(1):81-90. https://doi.org/10.1001/jama.294.1.81 PMid:15998894 PMCid:PMC2065861

Zhou Y, Yu X, Nicely A, Cunningham G, Challa C, McKinley K, Nickel R, Campbell A, Darbari D, Summar M, Majumdar S. Amino acid signature during sickle cell pain crisis shows significant alterations related to nitric oxide and energy metabolism. Molecular genetics and metabolism. 2022; 137(1-2):146-152. https://doi.org/10.1016/j.ymgme.2022.08.004 PMid:36030599

D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Espinosa JM, Gordeuk VR. Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment. Haematologica. 2023; 108(12):3418. https://doi.org/10.3324/haematol.2023.283288 PMid:37439373 PMCid:PMC10690926

Obeagu EI, Prajapati SK, Maurya SD, Maternal Anemia in the Context of Infectious Diseases during Pregnancy: A Review, International Journal of Medical Sciences and Pharma Research, 2025;11(1):8-13 https://doi.org/10.22270/ijmspr.v11i1.134

Obeagu EI, Chukwu PH. Inclusive Healthcare Approaches for HIV-Positive Sickle Cell Disease Patients: A Review. Current Research in Biological Sciences. 2025;1(1):01-8.

Obeagu EI, Obeagu GU. Managing gastrointestinal challenges: diarrhea in sickle cell anemia. Medicine. 2024; 103(18):e38075. https://doi.org/10.1097/MD.0000000000038075 PMid:38701274 PMCid:PMC11062666

Obeagu EI, Obeagu GU. Living with sickle cell in Uganda: A comprehensive perspective on challenges, coping strategies, and health interventions. Medicine. 2024 Dec 20;103(51):e41062. https://doi.org/10.1097/MD.0000000000041062 PMid:39705436 PMCid:PMC11666137

Obeagu EI, Adias TC, Obeagu GU. Advancing life: innovative approaches to enhance survival in sickle cell anemia patients. Annals of Medicine and Surgery. 2024; 86(10):6021-6036. https://doi.org/10.1097/MS9.0000000000002534 PMid:39359845 PMCid:PMC11444627

Bell V, Varzakas T, Psaltopoulou T, Fernandes T. Sickle cell disease update: new treatments and challenging nutritional interventions. Nutrients. 2024; 16(2):258. https://doi.org/10.3390/nu16020258 PMid:38257151 PMCid:PMC10820494

Khan SA, Damanhouri G, Ali A, Khan SA, Khan A, Bakillah A, Marouf S, Al Harbi G, Halawani SH, Makki A. Precipitating factors and targeted therapies in combating the perils of sickle cell disease---A special nutritional consideration. Nutrition & metabolism. 2016; 13:1-2. https://doi.org/10.1186/s12986-016-0109-7 PMid:27508000 PMCid:PMC4977632

Patel S, Patel R, Mukkala SR, Akabari A. Emerging therapies and management approaches in sickle cell disease (SCD): A critical review. Journal of Phytonanotechnology and Pharmaceutical Sciences. 2023; 3(3):1-1. https://doi.org/10.54085/jpps.2023.3.3.3

Obeagu EI, Prajapati SK, Maurya SD, Anemia in Pregnancy: Exploring Non-Iron Deficiency Causes, International Journal of Medical Sciences and Pharma Research, 2025;11(1):1-7 https://doi.org/10.22270/ijmspr.v11i1.130

Boma PM, Kaponda AA, Panda J, Bonnechère B. Enhancing the management of pediatric sickle cell disease by integrating functional evaluation to mitigate the burden of vaso-occlusive crises. Journal of Vascular Diseases. 2024; 3(1):77-87. https://doi.org/10.3390/jvd3010007

Obeagu EI, Chukwu PH. Inclusive Healthcare Approaches for HIV-Positive Sickle Cell Disease Patients: A Review. Current Research in Biological Sciences. 2025;1(1):01-8.

Published

15-09-2025

How to Cite

Obeagu , E. I. (2025). The Role of Nitric Oxide in Enhancing Erythropoiesis in Sickle Cell Disease. International Journal of Medical Sciences and Pharma Research, 11(3), 8–12. https://doi.org/10.22270/ijmspr.v11i3.151

Most read articles by the same author(s)

1 2 3 4 > >>