N1 and N2 Neutrophils in Breast Cancer: Mechanisms, Clinical Relevance, and Therapeutic Potential

Authors

DOI:

https://doi.org/10.22270/ijmspr.v11i2.141

Keywords:

N1 Neutrophils, N2 Neutrophils, Breast Cancer, Tumor Microenvironment, Immunotherapy

Abstract

Neutrophils are key components of the immune system and play a significant role in the tumour microenvironment (TME) of breast cancer. These cells can undergo polarization into two distinct phenotypes: N1 and N2 neutrophils. N1 neutrophils are typically associated with antitumor immunity, characterized by the production of pro-inflammatory cytokines and reactive oxygen species (ROS), which help inhibit tumour growth and metastasis. On the other hand, N2 neutrophils contribute to tumour progression by secreting immunosuppressive cytokines, promoting angiogenesis, and enhancing metastatic spread. The balance between these two phenotypes can have significant implications for cancer progression and treatment outcomes in breast cancer patients. The polarization of neutrophils is regulated by a complex network of cytokines, growth factors, and signalling pathways in the TME. Factors such as IL-12, IFN-γ, and GM-CSF promote N1 polarization, while IL-10, TGF-β, and VEGF are key drivers of N2 polarization. These pathways influence neutrophil recruitment, activation, and survival within the TME. Strategies targeting neutrophil polarization could offer new opportunities for breast cancer treatment, particularly for patients with aggressive or metastatic disease.

Keywords: N1 Neutrophils, N2 Neutrophils, Breast Cancer, Tumor Microenvironment, Immunotherapy

Author Biographies

Emmanuel Ifeanyi Obeagu , Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Isaac Isiko , Department of Community Medicine, Axel Pries Institute of Public Health and Biomedical Sciences, Nims University, Jaipur, Rajasthan State, India

Department of Community Medicine, Axel Pries Institute of Public Health and Biomedical Sciences, Nims University, Jaipur, Rajasthan State, India

References

Gong YT, Zhang LJ, Liu YC, Tang M, Lin JY, Chen XY, Chen YX, Yan Y, Zhang WD, Jin JM, Luan X. Neutrophils as potential therapeutic targets for breast cancer. Pharmacological Research. 2023:106996. https://doi.org/10.1016/j.phrs.2023.106996 PMid:37972723

Sounbuli K, Mironova N, Alekseeva L. Diverse neutrophil functions in cancer and promising neutrophil-based cancer therapies. International Journal of Molecular Sciences. 2022;23(24):15827. https://doi.org/10.3390/ijms232415827 PMid:36555469 PMCid:PMC9779721

Antuamwine BB, Bosnjakovic R, Hofmann‐Vega F, Wang X, Theodosiou T, Iliopoulos I, Brandau S. N1 versus N2 and PMN‐MDSC: a critical appraisal of current concepts on tumor‐associated neutrophils and new directions for human oncology. Immunological Reviews. 2023;314(1):250-279. https://doi.org/10.1111/imr.13176 PMid:36504274

Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Frontiers in oncology. 2019;9:1146. https://doi.org/10.3389/fonc.2019.01146 PMid:31799175 PMCid:PMC6874146

Zhang X, Zhang W, Yuan X, Fu M, Qian H, Xu W. Neutrophils in cancer development and progression: roles, mechanisms, and implications. International journal of oncology. 2016;49(3):857-867. https://doi.org/10.3892/ijo.2016.3616 PMid:27573431

Yang S, Jia J, Wang F, Wang Y, Fang Y, Yang Y, Zhou Q, Yuan W, Bian Z. Targeting neutrophils: Mechanism and advances in cancer therapy. Clinical and Translational Medicine. 2024;14(3):e1599. https://doi.org/10.1002/ctm2.1599 PMid:38450975 PMCid:PMC10918741

Mouchemore KA, Anderson RL, Hamilton JA. Neutrophils, G‐CSF and their contribution to breast cancer metastasis. The FEBS journal. 2018 ;285(4):665-679. https://doi.org/10.1111/febs.14206 PMid:28834401

Ocana A, Nieto-Jiménez C, Pandiella A, Templeton AJ. Neutrophils in cancer: prognostic role and therapeutic strategies. Molecular cancer. 2017;16:1-7. https://doi.org/10.1186/s12943-017-0707-7 PMid:28810877 PMCid:PMC5558711

Subhan MA, Torchilin VP. Neutrophils as an emerging therapeutic target and tool for cancer therapy. Life Sciences. 2021;285:119952. https://doi.org/10.1016/j.lfs.2021.119952 PMid:34520766

Zheng C, Xu X, Wu M, Xue L, Zhu J, Xia H, Ding S, Fu S, Wang X, Wang Y, He G. Neutrophils in triple-negative breast cancer: an underestimated player with increasingly recognized importance. Breast Cancer Research. 2023;25(1):88. https://doi.org/10.1186/s13058-023-01676-7 PMid:37496019 PMCid:PMC10373263

Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. Advanced Materials. 2024;36(19):2310318. https://doi.org/10.1002/adma.202310318 PMid:38320755

Grecian R, Whyte MK, Walmsley SR. The role of neutrophils in cancer. British Medical Bulletin. 2018;128(1):5-14. https://doi.org/10.1093/bmb/ldy029 PMid:30137312 PMCid:PMC6289220

Timaxian C, Vogel CF, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I. Pivotal role for Cxcr2 in regulating tumor-associated neutrophil in breast cancer. Cancers. 2021;13(11):2584. https://doi.org/10.3390/cancers13112584 PMid:34070438 PMCid:PMC8197482

Hajizadeh F, Maleki LA, Alexander M, Mikhailova MV, Masjedi A, Ahmadpour M, Hashemi V, Jadidi-Niaragh F. Tumor-associated neutrophils as new players in the immunosuppressive process of the tumor microenvironment in breast cancer. Life sciences. 2021;264:118699. https://doi.org/10.1016/j.lfs.2020.118699 PMid:33137368

Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Molecular Cancer. 2023 ;22(1):148. https://doi.org/10.1186/s12943-023-01843-6 PMid:37679744 PMCid:PMC10483725

Gomes T, Várady CB, Lourenço AL, Mizurini DM, Rondon AM, Leal AC, Gonçalves BS, Bou-Habib DC, Medei E, Monteiro RQ. IL-1β blockade attenuates thrombosis in a neutrophil extracellular trap-dependent breast cancer model. Frontiers in immunology. 2019;10:2088. https://doi.org/10.3389/fimmu.2019.02088 PMid:31552036 PMCid:PMC6737452

Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Molecular Cancer. 2024;23(1):200. https://doi.org/10.1186/s12943-024-02107-7 PMid:39277750 PMCid:PMC11401288

Ohms M, Möller S, Laskay T. An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro. Frontiers in immunology. 2020;11:532. https://doi.org/10.3389/fimmu.2020.00532 PMid:32411122 PMCid:PMC7198726

Tyagi A, Sharma S, Wu K, Wu SY, Xing F, Liu Y, Zhao D, Deshpande RP, D'Agostino Jr RB, Watabe K. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nature communications. 2021;12(1):474. https://doi.org/10.1038/s41467-020-20733-9 PMid:33473115 PMCid:PMC7817836

Dutta A, Bhagat S, Paul S, Katz JP, Sengupta D, Bhargava D. Neutrophils in Cancer and potential therapeutic strategies using neutrophil-derived exosomes. Vaccines. 2023;11(6):1028. https://doi.org/10.3390/vaccines11061028 PMid:37376417 PMCid:PMC10301170

Rapoport BL, Steel HC, Theron AJ, Smit T, Anderson R. Role of the neutrophil in the pathogenesis of advanced cancer and impaired responsiveness to therapy. Molecules. 2020 ;25(7):1618. https://doi.org/10.3390/molecules25071618 PMid:32244751 PMCid:PMC7180559

Yan M, Zheng M, Niu R, Yang X, Tian S, Fan L, Li Y, Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Frontiers in Cell and Developmental Biology. 2022;10:938289. https://doi.org/10.3389/fcell.2022.938289 PMid:36060811 PMCid:PMC9428510

Wu G, Pan B, Shi H, Yi Y, Zheng X, Ma H, Zhao M, Zhang Z, Cheng L, Huang Y, Guo W. Neutrophils' dual role in cancer: from tumor progression to immunotherapeutic potential. International Immunopharmacology. 2024;140:112788. https://doi.org/10.1016/j.intimp.2024.112788 PMid:39083923

Chen Q, Yin H, Liu S, Shoucair S, Ding N, Ji Y, Zhang J, Wang D, Kuang T, Xu X, Yu J. Prognostic value of tumor-associated N1/N2 neutrophil plasticity in patients following radical resection of pancreas ductal adenocarcinoma. Journal for immunotherapy of cancer. 2022;10(12). https://doi.org/10.1136/jitc-2022-005798 PMid:36600557 PMCid:PMC9730407

Li Y, Li M, Su K, Zong S, Zhang H, Xiong L. Pre-metastatic niche: from revealing the molecular and cellular mechanisms to the clinical applications in breast cancer metastasis. Theranostics. 2023;13(7):2301. https://doi.org/10.7150/thno.82700 PMid:37153744 PMCid:PMC10157731

Al Qutami F, AlHalabi W, Vijayakumar A, Rawat SS, Mossa AH, Jayakumar MN, Samreen B, Hachim MY. Characterizing the Inflammatory Profile of Neutrophil-Rich Triple-Negative Breast Cancer. Cancers. 2024;16(4):747. https://doi.org/10.3390/cancers16040747 PMid:38398138 PMCid:PMC10886617

Mahmud Z, Rahman A, Mishu ID, Kabir Y. Mechanistic insights into the interplays between neutrophils and other immune cells in cancer development and progression. Cancer and Metastasis Reviews. 2022;41(2):405-432. https://doi.org/10.1007/s10555-022-10024-8 PMid:35314951

Lecot P, Sarabi M, Pereira Abrantes M, Mussard J, Koenderman L, Caux C, Bendriss-Vermare N, Michallet MC. Neutrophil heterogeneity in cancer: from biology to therapies. Frontiers in immunology. 2019;10:2155. https://doi.org/10.3389/fimmu.2019.02155 PMid:31616408 PMCid:PMC6764113

Zhao J, Xie X. Prediction of prognosis and immunotherapy response in breast cancer based on neutrophil extracellular traps-related classification. Frontiers in Molecular Biosciences. 2023;10:1165776. https://doi.org/10.3389/fmolb.2023.1165776 PMid:37304069 PMCid:PMC10250592

Wang X, Qiu L, Li Z, Wang XY, Yi H. Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases. Frontiers in immunology. 2018;9:2456. https://doi.org/10.3389/fimmu.2018.02456 PMid:30473691 PMCid:PMC6237929

Shaul ME, Fridlender ZG. Cancer‐related circulating and tumor‐associated neutrophils-subtypes, sources and function. The FEBS journal. 2018;285(23):4316-4342. https://doi.org/10.1111/febs.14524 PMid:29851227

Awasthi D, Sarode A. Neutrophils at the crossroads: unraveling the multifaceted role in the tumor microenvironment. International Journal of Molecular Sciences. 2024;25(5):2929. https://doi.org/10.3390/ijms25052929 PMid:38474175 PMCid:PMC10932322

Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-mediated neutrophil polarization and therapeutic implications. International Journal of Molecular Sciences. 2022;23(6):3218. https://doi.org/10.3390/ijms23063218 PMid:35328639 PMCid:PMC8951452

Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. InSeminars in cancer biology 2022;79:91-104. Academic Press. https://doi.org/10.1016/j.semcancer.2021.07.011 PMid:34280576

Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Frontiers in oncology. 2022;12:882896. https://doi.org/10.3389/fonc.2022.882896 PMid:36003772 PMCid:PMC9393759

Saraiva DP, Correia BF, Salvador R, de Sousa N, Jacinto A, Braga S, Cabral MG. Circulating low density neutrophils of breast cancer patients are associated with their worse prognosis due to the impairment of T cell responses. Oncotarget. 2021;12(24):2388. https://doi.org/10.18632/oncotarget.28135 PMid:34853660 PMCid:PMC8629401

Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Frontiers in Immunology. 2022;13:985815. https://doi.org/10.3389/fimmu.2022.985815 PMid:36300115 PMCid:PMC9590653

Guo F, Li H, Wang J, Wang J, Zhang J, Kong F, Zhang Z, Zong J. MicroRNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Cancer Management and Research. 2024:1491-1507. https://doi.org/10.2147/CMAR.S477698 PMid:39450194 PMCid:PMC11499618

Rui XU, Zehao WA, Jiong WU. Advances in the role of tumor-associated neutrophils in the development of breast cancer. China Oncology. 2024;34(9):881-889.

Pylaeva E, Lang S, Jablonska J. The essential role of type I interferons in differentiation and activation of tumor-associated neutrophils. Frontiers in immunology. 2016;7:629. https://doi.org/10.3389/fimmu.2016.00629 PMid:28066438 PMCid:PMC5174087

Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood, The Journal of the American Society of Hematology. 2019;133(20):2159-2167. https://doi.org/10.1182/blood-2018-11-844548 PMid:30898857 PMCid:PMC6524564

Lau D, Lechermann LM, Gallagher FA. Clinical translation of neutrophil imaging and its role in cancer. Molecular Imaging and Biology. 2022;24(2):221-234. https://doi.org/10.1007/s11307-021-01649-2 PMid:34637051 PMCid:PMC8983506

Munkácsy G, Santarpia L, Győrffy B. Therapeutic potential of tumor metabolic reprogramming in triple-negative breast cancer. International Journal of Molecular Sciences. 2023;24(8):6945. https://doi.org/10.3390/ijms24086945 PMid:37108109 PMCid:PMC10138520

Chen Q, Zhang L, Li X, Zhuo W. Neutrophil extracellular traps in tumor metastasis: pathological functions and clinical applications. Cancers. 2021;13(11):2832. https://doi.org/10.3390/cancers13112832 PMid:34204148 PMCid:PMC8200981

Treffers LW, Hiemstra IH, Kuijpers TW, Van den Berg TK, Matlung HL. Neutrophils in cancer. Immunological reviews. 2016;273(1):312-328. https://doi.org/10.1111/imr.12444 PMid:27558343

SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, Johnson C, Cai D, Smith JL, Parent CA. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Frontiers in immunology. 2021;12:659996. https://doi.org/10.3389/fimmu.2021.659996 PMid:33912188 PMCid:PMC8071875

Buzaglo GB, Telles GD, Araújo RB, Junior GD, Ruberti OM, Ferreira ML, Derchain SF, Vechin FC, Conceição MS. The Therapeutic Potential of Physical Exercise in Cancer: The Role of Chemokines. International Journal of Molecular Sciences. 2024;25(24):13740. https://doi.org/10.3390/ijms252413740 PMid:39769501 PMCid:PMC11678861

Bareke H, Akbuga J. Complement system's role in cancer and its therapeutic potential in ovarian cancer. Scandinavian Journal of Immunology. 2018;88(1):e12672. https://doi.org/10.1111/sji.12672 PMid:29734524

Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz‐Blickwede M, Schilling B, Brandau S, Weiss S, Jablonska J. Type I IFN s induce anti‐tumor polarization of tumor associated neutrophils in mice and human. International journal of cancer. 2016;138(8):1982-1993. https://doi.org/10.1002/ijc.29945 PMid:26619320

Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduction and Targeted Therapy. 2023;8(1):367. https://doi.org/10.1038/s41392-023-01576-574 PMid:37752146 PMCid:PMC10522642

Soto-Perez-de-Celis E, Chavarri-Guerra Y, Leon-Rodriguez E, Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pacific journal of cancer prevention: APJCP. 2017;18(10):2689.

Chen Q, Yin H, Liu S, Shoucair S, Ding N, Ji Y, Zhang J, Wang D, Kuang T, Xu X, Yu J. Prognostic value of tumor-associated N1/N2 neutrophil plasticity in patients following radical resection of pancreas ductal adenocarcinoma. Journal for immunotherapy of cancer. 2022;10(12). https://doi.org/10.1136/jitc-2022-005798 PMid:36600557 PMCid:PMC9730407

Zeindler J, Angehrn F, Droeser R, Däster S, Piscuoglio S, Ng CK, Kilic E, Mechera R, Meili S, Isaak A, Weber WP. Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer. Breast cancer research and treatment. 2019;177:581-589. https://doi.org/10.1007/s10549-019-05336-3 PMid:31267330

Tyagi A, Sharma S, Wu K, Wu SY, Xing F, Liu Y, Zhao D, Deshpande RP, D'Agostino Jr RB, Watabe K. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nature communications. 2021;12(1):474. https://doi.org/10.1038/s41467-020-20733-9 PMid:33473115 PMCid:PMC7817836

Yin H, Gao S, Chen Q, Liu S, Shoucair S, Ji Y, Lou W, Yu J, Wu W, Pu N. Tumor‐associated N1 and N2 neutrophils predict prognosis in patients with resected pancreatic ductal adenocarcinoma: A preliminary study. MedComm. 2022;3(4). https://doi.org/10.1002/mco2.183 PMid:36349143 PMCid:PMC9632487

Zhao J, Xie X. Prediction of prognosis and immunotherapy response in breast cancer based on neutrophil extracellular traps-related classification. Frontiers in Molecular Biosciences. 202;10:1165776. https://doi.org/10.3389/fmolb.2023.1165776 PMid:37304069 PMCid:PMC10250592

Gong YT, Zhang LJ, Liu YC, Tang M, Lin JY, Chen XY, Chen YX, Yan Y, Zhang WD, Jin JM, Luan X. Neutrophils as potential therapeutic targets for breast cancer. Pharmacological Research. 2023:106996. https://doi.org/10.1016/j.phrs.2023.106996 PMid:37972723

Grassadonia A, Graziano V, Iezzi L, Vici P, Barba M, Pizzuti L, Cicero G, Krasniqi E, Mazzotta M, Marinelli D, Amodio A. Prognostic relevance of neutrophil to lymphocyte ratio (NLR) in luminal breast cancer: a retrospective analysis in the neoadjuvant setting. Cells. 2021;10(7):1685. https://doi.org/10.3390/cells10071685 PMid:34359855 PMCid:PMC8303552

Soto-Perez-de-Celis E, Chavarri-Guerra Y, Leon-Rodriguez E, Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pacific journal of cancer prevention: APJCP.;18(10):2689.

Saraiva DP, Correia BF, Salvador R, de Sousa N, Jacinto A, Braga S, Cabral MG. Circulating low density neutrophils of breast cancer patients are associated with their worse prognosis due to the impairment of T cell responses. Oncotarget. 2021;12(24):2388. https://doi.org/10.18632/oncotarget.28135 PMid:34853660 PMCid:PMC8629401

Zhang W, Shen Y, Huang H, Pan S, Jiang J, Chen W, Zhang T, Zhang C, Ni C. A rosetta stone for breast cancer: prognostic value and dynamic regulation of neutrophil in tumor microenvironment. Frontiers in immunology. 2020;11:1779. https://doi.org/10.3389/fimmu.2020.01779 PMid:32849640 PMCid:PMC7426521

Chung AW, Anand K, Anselme AC, Chan AA, Gupta N, Venta LA, Schwartz MR, Qian W, Xu Y, Zhang L, Kuhn J. A phase 1/2 clinical trial of the nitric oxide synthase inhibitor L-NMMA and taxane for treating chemoresistant triple-negative breast cancer. Science translational medicine. 2021;13(624):eabj5070. https://doi.org/10.1126/scitranslmed.abj5070 PMid:34910551

Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nature Reviews Cancer. 2016;16(7):431-446. https://doi.org/10.1038/nrc.2016.52 PMid:27282249

Mouchemore KA, Anderson RL, Hamilton JA. Neutrophils, G‐CSF and their contribution to breast cancer metastasis. The FEBS journal. 2018;285(4):665-679. https://doi.org/10.1111/febs.14206 PMid:28834401

Hajizadeh F, Maleki LA, Alexander M, Mikhailova MV, Masjedi A, Ahmadpour M, Hashemi V, Jadidi-Niaragh F. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life sciences. 2021;264:118699. https://doi.org/10.1016/j.lfs.2020.118699 PMid:33137368

Al Qutami F, Al Halabi W, Hachim MY. Identification of breast cancer LCK proto-oncogene as a master regulator of TNBC neutrophil enrichment and polarization. International journal of molecular sciences. 2023;24(17):13269. https://doi.org/10.3390/ijms241713269 PMid:37686072 PMCid:PMC10487917

Zheng C, Xu X, Wu M, Xue L, Zhu J, Xia H, Ding S, Fu S, Wang X, Wang Y, He G. Neutrophils in triple-negative breast cancer: an underestimated player with increasingly recognized importance. Breast Cancer Research. 2023;25(1):88. https://doi.org/10.1186/s13058-023-01676-7 PMid:37496019 PMCid:PMC10373263

Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer. Nature reviews Clinical oncology. 2019;16(10):601-620. https://doi.org/10.1038/s41571-019-0222-4 PMid:31160735

Schernberg A, Blanchard P, Chargari C, Deutsch E. Neutrophils, a candidate biomarker and target for radiation therapy?. Acta oncologica. 2017;56(11):1522-1530. https://doi.org/10.1080/0284186X.2017.1348623 PMid:28835188

Li Z, Zhao R, Cui Y, Zhou Y, Wu X. The dynamic change of neutrophil to lymphocyte ratio can predict clinical outcome in stage I-III colon cancer. Scientific reports. 2018;8(1):9453. https://doi.org/10.1038/s41598-018-27896-y PMid:29930287 PMCid:PMC6013456

Wang P, Xu MH, Xu WX, Dong ZY, Shen YH, Qin WZ. CXCL9 Overexpression Predicts Better HCC Response to Anti-PD-1 Therapy and Promotes N1 Polarization of Neutrophils. Journal of Hepatocellular Carcinoma. 2024:787-800. https://doi.org/10.2147/JHC.S450468 PMid:38737384 PMCid:PMC11088828

Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Frontiers in oncology. 2019;9:1146. https://doi.org/10.3389/fonc.2019.01146 PMid:31799175 PMCid:PMC6874146

Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology. 2012;1(8):1323-1343. https://doi.org/10.4161/onci.22009 PMid:23243596 PMCid:PMC3518505

Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nature Reviews Cancer. 2020;20(11):662-680. https://doi.org/10.1038/s41568-020-0285-7 PMid:32753728

Xu W, Weng J, Xu M, Zhou Q, Liu S, Hu Z, Ren N, Zhou C, Shen Y. Chemokine CCL21 determines immunotherapy response in hepatocellular carcinoma by affecting neutrophil polarization. Cancer Immunology, Immunotherapy. 2024;73(3):56. https://doi.org/10.1007/s00262-024-03650-4 PMid:38367070 PMCid:PMC10874310

Huang YC, Chang CY, Wu YY, Wu KL, Tsai YM, Lee HC, Tsai EM, Hsu YL. Single-cell transcriptomic profiles of lung pre-metastatic niche reveal neutrophil and lymphatic endothelial cell roles in breast cancer. Cancers. 2022;15(1):176. https://doi.org/10.3390/cancers15010176 PMid:36612175 PMCid:PMC9818165

Wu Y, Liu H, Sun Z, Liu J, Li K, Fan R, Dai F, Tang H, Hou Q, Li J, Tang X. The adhesion-GPCR ADGRF5 fuels breast cancer progression by suppressing the MMP8-mediated antitumorigenic effects. Cell Death & Disease. 2024;15(6):455. https://doi.org/10.1038/s41419-024-06855-8 PMid:38937435 PMCid:PMC11211477

Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Frontiers in oncology. 2022;12:882896. https://doi.org/10.3389/fonc.2022.882896 PMid:36003772 PMCid:PMC9393759

Jadoon, S.K., Soomro, R., Ahsan, M.N., Khan, R.M.I., Iqbal, S., Yasmin, F., Najeeb, H., Saleem, N., Cho, N., Shaikh, T.G. and Hasan, S.F.S., Association of neutrophil-to-lymphocyte ratio with clinical, pathological, radiological, laboratory features and disease outcomes of invasive breast cancer patients: A retrospective observational cohort study. Medicine, 2023;102(20):e33811. https://doi.org/10.1097/MD.0000000000033811 PMid:37335707 PMCid:PMC10194494

Tabariès S, Ouellet V, Hsu BE, Annis MG, Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM, Siegel PM. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast cancer research. 2015;17:1-8. https://doi.org/10.1186/s13058-015-0558-3 PMid:25882816 PMCid:PMC4413545

Hu P, Liu Q, Deng G, Zhang J, Liang N, Xie J, Zhang J. Radiosensitivity nomogram based on circulating neutrophils in thoracic cancer. Future Oncology. 2019;15(7):727-737. https://doi.org/10.2217/fon-2018-0398 PMid:30693787

Wang J, Ocadiz-Ruiz R, Hall MS, Bushnell GG, Orbach SM, Decker JT, Raghani RM, Zhang Y, Morris AH, Jeruss JS, Shea LD. A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs. Nature communications. 2023;14(1):4790. https://doi.org/10.1038/s41467-023-40478-5 PMid:37553342 PMCid:PMC10409732

Schmidt E, Distel L, Erber R, Büttner-Herold M, Rosahl MC, Ott OJ, Strnad V, Hack CC, Hartmann A, Hecht M, Fietkau R. Tumor-Associated Neutrophils Are a Negative Prognostic Factor in Early Luminal Breast Cancers Lacking Immunosuppressive Macrophage Recruitment. Cancers. 2024;16(18):3160. https://doi.org/10.3390/cancers16183160 PMid:39335132 PMCid:PMC11430230

Grassadonia A, Graziano V, Iezzi L, Vici P, Barba M, Pizzuti L, Cicero G, Krasniqi E, Mazzotta M, Marinelli D. Prognostic relevance of neutrophil to lymphocyte ratio (NLR) in luminal breast cancer: a retrospective analysis in the neoadjuvant setting. Cells. 2021;10(7):1685. https://doi.org/10.3390/cells10071685 PMid:34359855 PMCid:PMC8303552

Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Molecular Cancer. 2023;22(1):148. https://doi.org/10.1186/s12943-023-01843-6 PMid:37679744 PMCid:PMC10483725

Azab BN, Bhatt VR, Vonfrolio S, Bachir R, Rubinshteyn V, Alkaied H, Habeshy A, Patel J, Picon AI, Bloom SW. Value of the pretreatment albumin to globulin ratio in predicting long-term mortality in breast cancer patients. The American Journal of Surgery. 2013;206(5):764-770. https://doi.org/10.1016/j.amjsurg.2013.03.007 PMid:23866764

Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y, Zhang X, Ji R, Li C, Gu J, Zhang X. Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Molecular Cancer. 2024;23(1):198. https://doi.org/10.1186/s12943-024-02116-6 PMid:39272149 PMCid:PMC11396805

Published

15-06-2025

How to Cite

Obeagu , E. I. ., & Isiko , I. . (2025). N1 and N2 Neutrophils in Breast Cancer: Mechanisms, Clinical Relevance, and Therapeutic Potential. International Journal of Medical Sciences and Pharma Research, 11(2), 1–11. https://doi.org/10.22270/ijmspr.v11i2.141

Most read articles by the same author(s)

1 2 3 4 > >>