

Phytochemical Estimation and Antioxidant Potential of *Cinchona officinalis* L. Stem Bark Extracts

Ravi Yadav, Manisha Sahu, Premkumar Kishan Yadav, Sonpal Singh Thakur*, Jagdish Rathi

NRI Institute of Pharmaceutical Sciences, Sajjan Singh Nagar, Opposite Patel Nagar, Raisen Road Bhopal, MP, 462022, India

Article Info:

Article History:

Received 09 March 2023
Reviewed 22 April 2023
Accepted 19 May 2023
Published 15 June 2023

Cite this article as:

Yadav R, Sahu M, Yadav PK, Thakur SS, Rathi J, Phytochemical Estimation and Antioxidant Potential of *Cinchona officinalis* L. Stem Bark Extracts, International Journal of Medical Sciences & Pharma Research, 2023; 9(2):32-35

DOI: <http://dx.doi.org/10.22270/ijmspr.v9i2.65>

*Address for Correspondence:

Mr. Sonpal Singh Thakur, NRI Institute of Pharmaceutical Sciences, Sajjan Singh Nagar, Opposite Patel Nagar, Raisen Road Bhopal, MP, 462022, India

Abstract

Stem bark of *Cinchona* sp. (Rubiaceae) is one of the well known drugs for its therapeutic values in traditional as well as modern medicine. Even though a lot of work has been carried out on quinoline alkaloids of *Cinchona*, its phenolic constituents received very little attention. The aim of the present study was to evaluate *in vitro* antioxidant activities, qualitative and quantitative phytochemical analysis of *Cinchona officinalis* L. (*C. officinalis*) stem bark collected from Bhopal region of Madhya Pradesh. Qualitative analysis of various phytochemical constituents and quantitative analysis of total phenolic content were determined by the well-known test protocol available in the literature. The *in vitro* antioxidant activity of aqueous extract of the stem bark was assessed against DPPH radical scavenging assay methods using standard protocols. Phytochemical analysis revealed the presence of, carbohydrates, flavonoids, diterpenes, saponins, protein and phenols. The total phenolic content of aqueous stem bark extract of *C. officinalis* was found to be 0.548mg/100mg respectively. The activities of aqueous extracts against DPPH assay method were concentration dependent. The diverse array of phytochemicals present in the plant thus suggests its therapeutic potentials which may be explored in drug manufacturing industry as well as in traditional medicine.

Keywords: *Cinchona officinalis* L, Rubiaceae, Antioxidant activity, DPPH assay method.

INTRODUCTION

Indian medicinal plants are considered a vast source of several pharmacologically active principles and compounds, which are commonly used in home remedies against multiple ailments¹. Reactive oxygen species (ROS) are highly reactive molecules which may be both important mediators of some physiological functions and also potential prooxidants. Imbalance between ROS generation and antioxidant capacity induces a condition known as oxidative stress which may play a major role in the initiation and progression of numerous pathologies including cardiovascular dysfunction associated with vascular disease, hyperlipidemia, diabetes mellitus, hypertension and ischemia/reperfusion injury. The potential damage caused by an excess of ROS is controlled by a series of antioxidant defence mechanisms and among them, a key protective role is played by the antioxidant enzymes glutathione (GSH) peroxidase, superoxide dismutase (SOD) and GSH reductase². Several herbal secondary metabolites such as flavonoid have been found to protect cells from oxidative damage³. These compounds have been evidenced to stabilize RBC membrane by scavenging free radicals and reducing lipid peroxidation^{4,5}.

Cinchona is a large medicinal plant. *Cinchona* plant lives in the tropical rain forest region. *Cinchona* is believed to originate from the Andes Mountains in South America. It is believed that the name of *cinchona* was taken from the name of a Royal princess in Peru in 1638 the princess affected Malaria. After

cinchona treatment the princess was recovered from malaria⁶. In India *cinchona* is widely distributed throughout the Western Ghats (Nilgiris hills in Nilgiri district) and Annamali hills (in Coimbatore district) in Tamilnadu and it is also grown in West Bengal. *Cinchona* is commonly known as Jesuits bark, Peruvian bark, koina plant etc. Among all other countries Indonesia is largest producer of *cinchona*⁷. *Cinchona* is an evergreen plant, growing 5m to 15m in height. The plant is simple and oppositely arranged (simple panicle) leaves. *Cinchona* flowers are small and are rose or creamy white in colour. Flowers are in terminal clusters, the fruit capsule contain numerous seeds⁸. From ancient times this medicinal plant used for curing many diseases. During Second World War *cinchona* was the only effective drug against malarial infection⁹. But today the growth of these plantations decreased. *Cinchona* Bark has been used as traditional medicine for thousands of years. *Cinchona* plant is mainly cultivated for its Bark and it is considered as the most useful bark medicine. *Cinchona* Bark rich in alkaloids, Phytochemicals and other acids etc. Different types of alkaloids present in *cinchona* bark¹⁰. Alkaloids present in the *cinchona* are collectively referred to as quinoline. *Cinchona officinalis*, Peruvian bark, is a family member of Rubiaceae, originally from South America. The bark is mainly used for medicinal purposes and possesses a strong antimalarial effect. It consists of 16% quinine, 15% alkaloids, 0.25% to 3.0% cinchonidine, quinidine, cinchonine, and cinchonine in

combination with other vigorous compounds like tannin. In addition, minerals, essential oils, acids, flavonoids, and phytosterols have also been identified. Its medicinal effects include antimicrobial factors, antiarrhythmic, anti-obesity, antioxidant, anti-inflammation, and anticancer properties. Quinine works on cancer cells by inducing apoptosis and preventing cell proliferation depending on dose and duration¹¹. The present study was focused to evaluate the phytochemical analysis and antioxidant activity of stem bark *C. officinalis*.

MATERIAL AND METHOD

Plant material

Stem bark *C. officinalis* free of diseases were collected from local market in separate sterile bags from Bhopal, Madhya Pradesh. Plant material (Stem bark part) selected for the study were washed thoroughly under running tap water and then were rinsed in distilled water; they were allowed to dry for some time at room temperature. Then the plant material was shade dried without any contamination for about 3 to 4 weeks. Dried plant material was grinded using electronic grinder. Powdered plant material was observed for their colour, odour, taste and texture. Dried plant material was packed in air tight container and stored for phytochemical and biological studies.

Chemical reagents

All the chemicals used in this study were obtained from Hi Media Laboratories Pvt. Ltd. (Mumbai, India), Sigma-Aldrich Chemical Co. (Milwaukee, WI, USA), SD Fine-Chem. Ltd. (Mumbai, India) and SRL Pvt. Ltd. (Mumbai, India). All the chemicals and solvent used in this study were of analytical grade.

Defatting of plant material

150 gram shade dried powder of stem bark of *C. officinalis* was extraction with petroleum ether using maceration method. The extraction was continued till the defatting of the material had taken place.

Extraction with aqueous solvents by maceration method

Plant material was extracted with aqueous solvent. Powdered plant materials were extracted by maceration method. The resultant content was filtered with whatman filter paper no.1 and kept for evaporation of solvent to get the dry concentrated extract. The dried crude concentrated extract was weighed to calculate the extractive yield then transferred to glass vials (6 × 2 cm) and stored in a refrigerator (4°C), till used for analysis¹².

Phytochemical screening

Phytochemical screening to detect the presence of bioactive agents was performed by standard procedures^{13, 14}. After the addition of specific reagents to the solution, the tests were detected by visual observation of color change or by precipitate formation.

Total phenol determination

The total phenolic content was determined using the method of Joshi *et al.*, 2019¹⁵. A volume of 2ml of each extracts or standard was mixed with 1 ml of Folin Ciocalteau reagent

(previously diluted with distilled water 1:10 v/v) and 1 ml (7.5g/l) of sodium carbonate. The mixture was allowed to stand for 15 min under room temperature. The colour developed was read at 765 nm using UV/visible spectrophotometer. The total phenolic content was calculated from the standard graph of gallic acid and the results were expressed as gallic acid equivalent (mg/100mg).

Antioxidant activity

DPPH radical scavenging assay

DPPH scavenging activity was measured by modified method of Dutta *et al.*, 2020¹⁶. DPPH scavenging activity was measured by the spectrophotometer. Stock solution (6 mg in 100ml methanol) was prepared such that 1.5 ml of it in 1.5 ml of methanol gave an initial absorbance. Decrease in the absorbance in presence of sample extract at different concentration (10-100 µg/ml) was noted after 15 minutes. 1.5 ml of DPPH solution was taken and volume made till 3 ml with methanol, absorbance was taken immediately at 517 nm for control reading. 1.5 ml of DPPH and 1.5 ml of the test sample of different concentration were put in a series of volumetric flasks and final volume was adjusted to 3 ml with methanol. Three test samples were taken and each processed similarly. Finally the mean was taken. Absorbance at zero time was taken for each concentration. Final decrease in absorbance was noted of DPPH with the sample at different concentration after 15 minutes at 517 nm. The percentage inhibition of free radical DPPH was calculated from the following equation: % inhibition = [(absorbance of control - absorbance of sample)/absorbance of control] × 100%. Though the activity is expressed as 50% inhibitory concentration (IC₅₀), IC₅₀ was calculated based on the percentage of DPPH radicals scavenged. The lower the IC₅₀ value, the higher is the antioxidant activity.

RESULTS AND DISCUSSION

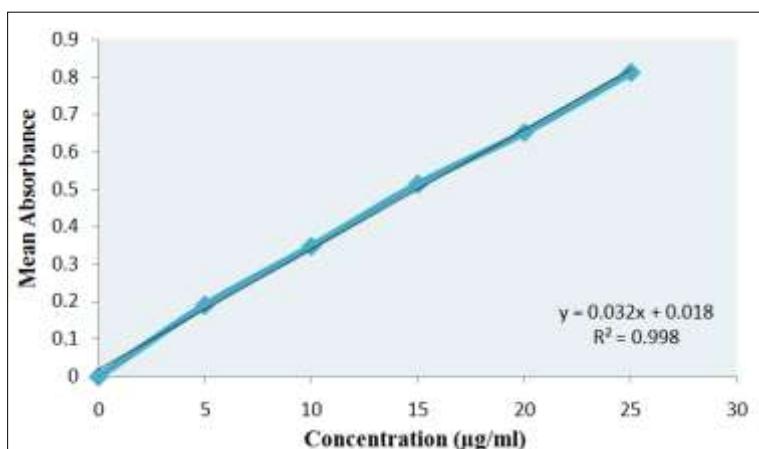

The stem bark of *C. officinalis* was collected from the local market of Bhopal, MP, India. Air-dried and extracted by maceration extraction process. The crude extracts so obtained after each of the maceration extraction process were concentrated on water bath by evaporation the solvents completely to obtain the actual yield of extraction. The yield of extracts obtained from the stem bark of the plants was found to be 7.357% w/w. The results of qualitative phytochemical analysis of the crude powder stem bark of *C. officinalis* are shown in Table 2. Aqueous extracts of stem bark sample of *C. officinalis* showed the presence of carbohydrates, flavonoids, diterpenes, saponins, protein and phenols. The total phenolic content of the extracts was expressed as percentage of gallic acid equivalent per 100 mg dry weight of sample. The total phenolic estimation of aqueous extracts of stem bark of *C. officinalis* showed the content values of 0.548 Table 2 & Figure1. DPPH radical scavenging assay measured hydrogen donating nature of extracts¹⁷. Under DPPH radical scavenging activity the inhibitory concentration 50% (IC₅₀) value of *C. officinalis* aqueous extract was found to be 71.72 µg/ml as compared to that of ascorbic acid (16.59 µg/ml). A dose dependent activity with respect to concentration was observed Table 3.

Table 1 Phytochemical evaluation of *C. officinalis* stem bark extracts

S. No.	Constituents	Aqueous extract
1.	Alkaloids Hager's Test:	-ve
2.	Glycosides Legal's Test:	- ve
3.	Flavonoids Alkaline Reagent Test: Lead acetate Test:	+ ve + ve
4.	Diterpenes Copper acetate Test:	+ ve
5.	Phenol Ferric Chloride Test:	+ ve
6.	Proteins Xanthoproteic Test:	+ ve
7.	Carbohydrate Fehling's Test:	+ ve
8.	Saponins Froth Test:	+ ve

Table 2 Results of phenolic content of stem bark extracts of *C. officinalis*

S. No	Extracts	Total phenolic content (mg/ 100 mg of dried extract)
3	Aqueous	0.548

Figure 1: Graph of estimation of total phenolic content**Table 3** % Inhibition of ascorbic acid and aqueous extract of *C. officinalis* using DPPH method

S. No.	Concentration (μg/ml)	% Inhibition	
		Ascorbic acid	Aqueous extract
1	10	46.54	23.23
2	20	50.32	37.45
3	40	67.21	44.67
4	60	71.23	48.62
5	80	79.41	55.36
6	100	86.13	61.54
IC₅₀		16.59	71.72

CONCLUSION

It can be concluded that from present investigation the phytochemical investigation gave valuable information about the different phytoconstituents present in the plant, which helps the future investigators concerning the selection of the particular extract for further investigation of isolating the active principle and also gave idea about different phytochemical have been found to possess a wide range of activities. The total phenolic content in aqueous stem bark extract is further proved by in vitro antioxidant studies. The extract, which can effectively scavenge various reactive oxygen species/free radicals under in vitro conditions. This may be due to the number of stable oxidized products that it can form after oxidation or radical scavenging. The broad range of activity of the extracts suggests that multiple mechanisms are responsible for the antioxidant activity. The multiple antioxidant activity of extract demonstrated in this study clearly indicates the potential application value of the plant. Further studies, on the use of above plant for their antioxidant role in various systems may provide potential natural antioxidants.

REFERENCES

1. Chatopadhyay I, Biswas K, Bandhopadhyay U, Banerjee RK. Turmeric and curcumin: biological actions and medicine of applications. *Curr Sci.* 2004; 87:44.
2. Zawadzka-Bartczak E, Kopka L, Gancarz A. Antioxidative enzyme profiles in fighter pilots. *Aviat Space Environ Med.* 2003; 74:654-658.
3. Nema P, Namdev A, Dangi A, Lodhi A, Rohit A, Vishwakarma H, A Comprehensive Review on Antioxidant-Rich Natural Fruit and Vegetable Products and Human Health, *Asian Journal of Dental and Health Sciences* 2022; 2(4):17-25 <https://doi.org/10.22270/ajdhs.v2i4.20>
4. Yu L. Free radical scavenging properties of conjugated linoleic acids. *J Agric Food Chem.* 2001; 49:3452-3546. <https://doi.org/10.1021/jf010172v>
5. Ebrahimzadeh M, Nabavi S, Nabavi S, Eslami B. Antihemolytic and antioxidant activities of Allium paradoxum. *Cent Eur J Biol.* 2010; 5:338-345. <https://doi.org/10.2478/s11535-010-0013-5>
6. Hariyanti H, Mauludin R, Sumirtapura YC, Kurniati NF. A Review: pharmacological activities of quinoline alkaloid of cinchona sp. *Biointerface Res Appl Chem.* 2013; 13(4):319. <https://doi.org/10.33263/BRIAC134.319>
7. Semedo MG, Pereira AL, Pita JR. The influence of German science on Cinchona and quinine research in Portugal in the second half of the 19th century. *Die Pharmazie.* 2021; 76(8):396-402.
8. Rawe SL, McDonnell C. The cinchona alkaloids and the aminoquinolines. *InAntimalarial Agents* 2020; 65-98. <https://doi.org/10.1016/B978-0-08-101210-9.00003-2>
9. Gurung P, De P. Spectrum of biological properties of cinchona alkaloids: A brief review. *J Pharmacogn Phytochem.* 2017; 6(4):162-6.
10. Li Y, Tian J. Evaluation of local anesthetic and antipyretic activities of Cinchona alkaloids in some animal models. *Trop J Pharm Res.* 2016; 15(8):1663-6. <https://doi.org/10.4314/tjpr.v15i8.10>
11. Raza MA, Rehman F, Anwar S, Zaha A, Rehman A, Rashid E, Kalsoom M, Ilahi H. The Medicinal aromatic activities of cinchona: A review. *Asian J Adv Res.* 2021; 8:42-45.
12. Mukherjee PK. Quality control of herbal drugs. 2nd Ed. Business Horizons; 2007.
13. Pradhan A, Jain P, Pal M, Chauhan M, Jain DK. Qualitative and quantitative determination of phytochemical contents of hydroalcoholic extract of *Salmalia malabarica*. *Pharmacologyonline.* 2019; 1:21-6.
14. Rani D, Kharkwal H, Jha M, Rai N. Assessment of the total flavonoid, phenol, alkaloid content and sun protection factor in *grewia abutilifolia* leaf extract. *J Pharm Res Int.* 2021; 33(49A):42-51. <https://doi.org/10.9734/jpri/2021/v33i49A33300>
15. Joshi S, Parkhe G, Aqueel N, Dixit N, Jain DK. Estimation of total phenolic, total flavonoids and total protein content of hydroalcoholic extract of *Anacyclus pyrethrum*. *Pharmacologyonline.* 2019; 1:27-33.
16. Dutta R, Sharma MK, Khan A, Jha M. Phytochemical and in vitro antioxidant assay of *Fumaria officinalis* leaf extract. *J Adv Sci Res.* 2020; 11(03):176-82.
17. Sunil C, Ignacimuthu S. In vitro and in vivo antioxidant activity of *Symplocos cochinchinensis* S. Moore leaves containing phenolic compounds. *Food Chem Toxicol.* 2011; 49:1604-9. <https://doi.org/10.1016/j.fct.2011.04.010>