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Abstract 
___________________________________________________________________________________________________________________ 

Cancer is a leading cause of death and poor quality of life globally. Even though several strategies are 

devised to reduce deaths, reduce chronic pain and improve the quality of life, there remains a shortfall 

in the adequacies of these cancer therapies. Among the cardinal steps towards ensuring optimal 

cancer treatment are early detection of cancer cells and drug application with high specificity to 

reduce toxicities. Due to increased systemic toxicities and refractoriness with conventional cancer 

diagnostic and therapeutic tools, other strategies including nanotechnology are being employed to 

improve diagnosis and mitigate disease severity. Over the years, immunotherapeutic agents based on 

nanotechnology have been used for several cancer types to reduce the invasiveness of cancerous cells 

while sparing healthy cells at the target site. Nanomaterials including carbon nanotubes, polymeric 

micelles and liposomes have been used in cancer drug design where they have shown considerable 

pharmacokinetic and pharmacodynamic benefits in cancer diagnosis and treatment. In this review, we 

outline the commonly used nanomaterials which are employed in cancer diagnosis and therapy. We 

have highlighted the suitability of these nanomaterials for cancer management based on their 

physicochemical and biological properties. We further reviewed the challenges that are associated 

with the various nanomaterials which limit their uses and hamper their translatability into the clinical 

setting in certain cancer types. 
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Introduction  

Cancer is a leading cause of death and a global health burden. 
It was estimated that there would be 18.1 million new cancer 
cases and 9.6 million cancer-related deaths by 20181. Cancer is 
a disease characterized by uncontrolled cell proliferation that 
spreads from an initial focal point to other parts of the body to 
cause death. For these reasons, it is a key to ensure earlier 
detection and treatment of cancers to reduce disease spread 
and mortalities. Amongst the widely used strategies, today in 
cancer research is nanotechnology. Nanotechnology has led to 
several promising results with its applications in the diagnosis 
and treatment of cancer, including drug delivery 2, gene 
therapy, detection and diagnosis, drug carriage, biomarker 
mapping, targeted therapy, and molecular imaging. 
Nanotechnology has been applied in the development of 
nanomaterials 3, such as gold nanoparticles and quantum dots, 
which are used for cancer diagnosis at the molecular level. 
Molecular diagnostics based on nanotechnology, such as the 
development of biomarkers, can accurately and quickly detect 
the cancers 4. Nanotechnology treatments, such as the 
development of nanoscale drug delivery, can ensure precise 
cancerous tissue targeting with minimal side effects 5, 6. Due to 
its biological nature, nanomaterials can easily cross cell 
barriers 7. Over the years, nanomaterials have been used in the 
treatment of tumors, due to their active and passive targeting. 
Although many drugs can be used to treat cancers, the 

sensitivity of the drugs generally leads to inadequate results 
and can have various side effects, as well as damage to the 
healthy cells. In view of that, several studies have examined 
different forms of nanomaterials, such as liposomes, polymers, 
molecules, and antibodies, with the conclusion that a 
combination of these nanomaterials in cancer drug design can 
achieve a balance between increasing efficacy and reducing 
the toxicity of drugs 8. However, due to the potential toxicity of 
nanomaterials, there is still a lot of advancement to be done on 
them before their readily acceptance in the clinic for cancer 
management 9. Smart polymers are representing promising 
means for targeted drug delivery, enhanced drug delivery, 
gene therapy, actuator stimuli and protein folders. Smart 
polymers are very promising applicants in drug delivery, 
tissue engineering, cell culture, gene carriers, textile 
engineering, oil recovery, radioactive wastage and protein 
purification 10. 

Nanotechnology in cancer diagnosis  

Genetic mutations can cause changes in the synthesis of 
certain biomolecules leading to uncontrolled cell proliferation 
and ultimately cancerous tissues 7. Cancers can be classified as 
either benign or malignant. Benign tumors are confined to the 
origin of cancer while malignant tumors actively shed cells 
that invade surrounding tissues as well as distant organs 11.  
Cancer diagnostic and therapeutic strategies are targeted at 
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early detection and inhibition of cancerous cell growth and 
their spread. Notable among the early diagnostic tools for 
cancers is the use of positron emission tomography (PET), 
magnetic resonance imaging (MRI), computed tomography 
(CT) and ultrasound 12. These imaging systems, however, are 
limited by their inadequate provision of relevant clinical 
information about different cancer types and the stage . Hence 
it makes it difficult to obtain a full evaluation of the disease 
state based on which an optimum therapy can be provided 13, 

14. 

Nanotechnology used in cancer biomarker screening  

Cancer biomarkers are biological features whose expression 
indicates the presence or state of a tumor. Such markers are 
used to study cellular processes, to monitor or identify 
changes in cancer cells, and these results could ultimately lead 
to a better understanding of tumors. Biomarkers can be 
proteins, protein fragments or DNA. Among them, tumor 
biomarkers, which are indicators of a tumor, can be tested to 
verify the presence of specific tumors. Tumor biomarkers 
ideally should possess a high sensitivity (>75%) and 
specificity (99.6%) 15. Under current medical conditions, 
biomarkers from blood, urine, or saliva samples are used to 
screen individuals for cancer risk. But these biomarkers have 
not proven adequate for cancer screening. Therefore, several 
researchers have resorted to the study of extract patterns of 
abnormally expressed proteins, peptide fragments, glycans 
and autoantibodies from serum, urine, ascites or tissue 
samples from cancer patients 16-19. With the development of 
proteomics technology, protein biomarkers for many cancers 
have been discovered. In general, protein profiling tests would 
remove the high molecular weight proteins such as albumin 
and immunoglobulins. However, the removal of these proteins 
also removes the low molecular weight protein biomarkers 
conjugated to them, resulting in the loss of the biomarkers of 
interest. These low molecular weight proteins represent a 
potential biomarker-rich population 20-22. Two studies led by 
Geho and Luchini came up with the method of capturing and 
enriching low molecular weight proteins by nanoparticles to 
obtain biomarkers from biological liquids, thus improving the 
screening of biomarkers 23, 24. Nanoparticles compete with the 
carrier proteins by their surface characteristics, such as 
electric charge, or functional biomolecules, which are 
currently possessed by mesoporous silica particles, hydrogel 
nanoparticles, and carbon nanotubes 23-30.  

Another method to improve screening with nanocarrier is to 
improve the sensitivity of mass spectrometry. The unique 
optical and thermal properties of carbon nanotubes enhance 
the energy-transfer efficiency of the analyte, contributing to 
the absorption and ionization of the analyte, and eliminate the 
interference of inherent matrix ions 30-33. A third approach is 
to use nanotechnology to make lab-on-chip microfluidics 
devices that can be used for immuno-screening or to study the 
properties of tumor cells. For example, a system showing great 
promise is lab-on-a-chip for high performance multiplexed 
protein detection using quantum dots made of cadmium 
selenide (CdSe) core with a zinc sulfide (ZnS) shell linked to 
antibodies to carcinoembryonic antigen, cancer antigen 125 
and Her-2/Neu 33. Another example is that cells growing on 
the surface of different sized nanometres, which were 
discovered by these nanometres across can differentiate 
between tumor cells 34. Suffice it to say that there are still 
false-positive and false-negative results from screening of 
biomarkers by nanotechnology, and we need to improve 
sensitivity without compromising specificity. 

Nanotechnology aids in tumor imaging  

In the past few decades, the application of nanoparticles in 
cancer diagnosis and monitoring has attracted a lot of 

attention with several nanoparticle types being used today for 
molecular imaging. Due to their advantages including small 
size, good biocompatibility, and high atomic number, they 
have gained prominence in recent cancer research and 
diagnosis. Nanoparticles used in cancer such as 
semiconductors, quantum dots and iron oxide nanocrystals 
possess optical, magnetic or structural properties that are less 
common in other molecules 35. Different anti-tumor drugs and 
biomolecules including peptides, antibodies or other 
chemicals, can be used with nanoparticles to label highly 
specific tumors, which are useful for early detection and 
screening of cancer cells 36. For cancer diagnostics, imaging of 
tumor tissue with nanoparticles has made it possible to detect 
cancer in its early stages. In lung cancer, the detection of 
metastases can be determined by developing immune 
superparamagnetic iron oxide nanoparticles (SPIONs) that can 
be used in MRI imaging with the cancer cell lines as the target 
for the SPIONs 37. Recent studies have shown a high specificity 
of SPIONs with no known side effects, making them suitable 
building blocks for aerosols in lung cancer MRI imaging 38-41. 
Magnetic powder imaging has also been used in tomographic 
imaging technology where it has shown a high resolution and 
sensitivity to cancer tissues 42. In animal experiments, 
nebulization of the lungs has been achieved using magnetic 
nanoparticles (MNPs) with epidermal growth factor receptor 
(EGFR), a commonly expressed protein in non-small cell lung 
cancer (NSCLC) cases as a target. Further, in vitro studies 
using nanosystem for positron emission tomography (PET) 
have also been developed based on self-assembled 
amphiphilic dendritic molecules. These dendritic molecules 
spontaneously assemble into uniform supramolecular 
nanoparticles with abundant PET reporting units on the 
surface. By taking advantage of dendritic multivalence and the 
enhanced penetration and retention (EPR) effect, the dendritic 
nanometer system effectively accumulates in tumors, resulting 
in extremely sensitive and specific imaging of various tumors 
while reducing treatment toxicities. 

Nanotechnology tools used in cancer diagnosis  

In current research, nanotechnology can validate cancer 
imaging at the tissue, cell, and molecular levels 42. This is 
achieved through the capacity of nanotechnology applications 
to explore the tumor's environment, For instance, pH- 
response to fluorescent nanoprobes can help detect fibroblast 
activated protein-a on the cell membrane of tumor-associated 
fibroblasts43. Hereon, we will discuss some nanotechnology-
based spatial and temporal techniques that can help 
accurately track living cells and monitor dynamic cellular 
events in tumors.  

Near infrared (NIR) quantum dots  

The lack of ability to penetrate objects limits the use of visible 
spectral imaging. Quantum dots that emit fluorescence in the 
near-infrared spectrum (i.e., 700-1000 nanometers) have been 
designed to overcome this problem, making them more 
suitable for imaging colorectal cancer, liver cancer, pancreatic 
cancer, and lymphoma 44-46. A second near-infrared (NIR) 
window (NIR-ii, 900-1700 nm) with higher tissue penetration 
depth, higher spatial and temporal resolution has also been 
developed to aid cancer imaging. Also, the development of a 
silver-rich Ag2Te quantum dots (QDs) containing a sulfur 
source has been reported to allow visualization of better 
spatial resolution images over a wide infrared range 47, 48.  

Nanoshells 

Another commonly used nanotechnology application is the use 
of nanoshells. Nanoshells are dielectric cores between 10 and 
300 nanometers in size, usually made of silicon and coated 
with a thin metal shell (usually gold)49,50. These nanoshells 
work by converting plasma-mediated electrical energy into 
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light energy and can be flexibly tuned optically through UV-
infrared emission/absorption arrays. Nanoshells are desirable 
because their imaging is devoid of the heavy metal toxicity 51 
even though their uses are limited by their large sizes.  

Colloidal gold nanoparticles  

Gold nanoparticle (AuNPs) is a good contrast agent because of 
its small size, good biocompatibility, and high atomic number. 
Research shows that AuNPs work by both active and passive 
ways to target cells. The principle of passive targeting is 
governed by a gathering of the gold nanoparticles to enhance 
imaging because of the permeability tension effect (EPR) in 
tumor tissues 52. Active targeting, on the other hand, is 
mediated by the coupling of AuNPs with tumor-specific 
targeted drugs, such as EGFR monoclonal antibodies, to 
achieve AuNP active targeting of tumor cells. When the energy 
exceeds 80kev, the mass attenuation rate of gold becomes 
higher than alternative elements like iodine, indicating greater 
prospect gold nanoparticles 53, 54. Rand et al. mixed AuNPs 
with liver cancer cells and found that using X-ray imaging; the 
clusters of liver cancer cells in the gold nanocomposite group 
were significantly stronger than those in the liver cancer cells 
alone. These findings have important implications for early 
diagnosis, with the technique allowing tumors as small as a 
few millimeters in diameter to be detected in the body 55. 

Nanotechnology in cancer therapy tools of 
nanotechnology for cancer therapy  

The development of nanotechnology is based on the usage of 
small molecular structures and particles as tools for delivering 
drugs. Nano-carriers such as liposomes, micelles, dendritic 
macromolecules, quantum dots, and carbon nanotubes have 
been widely used in cancer treatment. 

Polymeric micelles  

Polymeric nanoparticles (PNPs) are the inventions that relate 
to a solid micelle with a particle size range of 10-1000 nm 56. 
PNPs are collectively known as polymer nanoparticle, 
nanospheres, nanocapsules or polymer micelles and they were 
the first polymers reported for drug delivery systems. PNPs 
serve as drug carriers for hydrophobic drugs and are widely 
used for drug discovery 57-59. The PNPs constructed from 
amphiphilic polymers with a hydrophilic and hydrophobic 
block can perform rapid self-assembly because of the 
hydrophobic interactions in an aqueous solution 60. The PNPs 
can capture the hydrophobic drugs because of a covalent bond 
or the interaction via a hydrophobic core. Thus, to carry the 
hydrophilic charged molecules, such as proteins, peptides, and 
nucleic acids, these blocks are switched to allow interactions 
in the core and neutralize the charge 58. The advantages of the 
higher thermodynamic stability and the smaller volume make 
the PNPs a suitable drug carrier with good endothelial cell 
permeability while avoiding kidney rejection 61-64. The 
hydrophobic macromolecules and drugs can be transferred to 
the center of the PNPs, hence, the injection of PNPs suspension 
after being separated in an aqueous solution could achieve 
therapeutic effect 65. Importantly, by oral or parenteral 
administration, drugs can reach the target cells in different 
ways; potentially provide alternative ways to lower 
cytotoxicity in healthy tissues compared to the cancer cells. 
However, the major challenges in the use of PNPs for cancer 
nanomedicine still exist in how to effectively deliver the drugs 
to the target site with limited side effects or drug resistance. 
Recently, the PNPs have been used widely in the 
nanotechnology-based cancer drug design due to their 
excellent potential benefits for patient care. For example, 
adriamycin conjugated nanomaterial was used to treat several 
types of cancers where it achieved therapeutic effects to a 
decent degree. However, it also presented with many side-
effects, such as toxicity and heart problems, thereby limiting 

its use. Such problems are overcome by Doxil (a liposomal 
form of doxorubicin), which is less associated with 
cardiotoxicity in patients, and hence may provide a safer 
nanomaterial synthetic approach for researchers in the future 
66-69. 

Carbon nanotubes  

Based on the structure and the diameter, Carbon nanotubes 
(CNTs) can be categorized into two kinds, the single-walled 
CNTs (SWNTs) and the multiwalled CNTs (MWNTs). The 
SWNTs are composed of monolithic cylindrical graphene, and 
the MWNTs are composed of concentric graphene70. Because 
of the physical and chemical properties of carbon nanotubes, 
that include surface area, mechanical strength, metal 
properties, electrical and thermal conductivity, it is a 
candidate well suited for large-scale biomedical applications 
71. Carbon nanotubes also possess a property that allows them 
to absorb light from the near-infrared (NIR) region, causing 
the nanotubes to heat up by the thermal effect, hence can 
target tumor cells 72-74. The natural forms of carbon nanotubes 
promote noninvasive penetration of biofilms and are regarded 
as highly competent carriers for the transport of various drug 
molecules into living cells 75. Due to the suitability of carbon 
nanotubes, drugs such as paclitaxel are assembled with them 
and administered both in vitro and in vivo for cancer 
treatment 76. 

Liposomes 

Liposomes are one of the most studied nanomaterials, which 
are nanoscale spheres composed of natural or synthesized 
phospholipid bilayer membrane and water phase nuclei 77. 
Because of the amphiphilicity of phospholipids, liposomes 
form spontaneously 78, allowing hydrophilic drugs to 
preferentially stay in the monolayer liposome while 
hydrophobic ones form before the multilayer liposome 79. 
Some drugs could be incorporated into liposomes by 
exchanging them from acidic buffer to the neutral buffer. 
Neutral drugs can be transported in liposomes also, but due to 
a poor avidity for acidic environments, they are not readily 
released from the inside of the liposomes 80. Other 
mechanisms of drug delivery are the combination of saturated 
drugs with organic solvents to form liposomes. Under the 
influence of the EPR effect 81, the vesicle of size around 4000 
kDa or 500 nm can be allowed into the tumor by the gaps in 
vessels 52. In tumors they can fuse with cells, are internalized 
by endocytosis, and release drugs in the intracellular space. In 
the case of the appropriate pH, redox potential, ultrasonic and 
under the electromagnetic field, the liposome can also release 
the drug through passive or active ligand-mediated activity 79. 
The targeted therapy has an advantage in the vascular system, 
micrometastases, and blood cancers. It has been shown that 
the half-life of liposome is affected by size. The liposome up to 
100 nanometers easily penetrate the tumor and stay longer, 
while the half-life of the bigger liposome is shorter because 
they are easily recognized and cleared by the mononuclear 
phagocyte system82. 

Dendrimers  

The dendrimers are nanocarriers that have a spherical 
polymer core with regularly spaced branches 83. As the 
dendritic macromolecule diameter increases, the tendency to 
tilt towards a spherical structure increases 84. There are 
usually two ways to synthesize dendrimers, a divergent 
method in which the dendrimers can grow outward from the 
central nucleus, and a convergence method, where the 
dendrimers grow inward from the edges and end up in the 
central nucleus85, 86. Various molecules including 
polyacrylamide, polyglycerolsuccinic acid, polylysine, 
polyglycerin, poly2, 2bis (hydroxymethyl) propionic acid, and 
melamine are commonly used to form dendrimers 87, 88. These 
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dendritic macromolecules exhibit different chemical 
structures and properties, such as alkalinity, hydrogen bond 
capacity and charge, which can be regulated by growing 
dendritic macromolecules or changing the groups on the 
surface of dendritic macromolecules. In general, the dendritic 
drug conjugates are formed by the covalent binding of 
antitumor drugs to dendritic peripheral groups 89. Thus, 
several drug molecules can attach to each dendritic molecule 
and the release of these therapeutic molecules is controlled in 
part by the nature of the attachment. The physicochemical and 
biological properties of the polymer including the size, charge, 
multi-ligand groups, lipid bilayer interactions, cytotoxicity, 
internalization, plasma retention time, biological distribution, 
and filtration of dendritic macromolecules, have made 
dendrimers potential nanoscale carriers86. Several studies 
have further shown that cancer cells with a high expression of 
folate receptors could form foils from dendritic molecules 
bound to folate 90-92. An added advantage of dendrimers is 
their ability to bind to DNA as seen with the DNA-polyamides 
clustering DNA-poly (amidoamine) (DNAPAMAM), making 
them highly effective at killing cancer cells that express the 
folate receptor 87.  

Quantum dots  

Quantum dots (QDs) are small particles or nanocrystals of 
semiconductor materials between 2 and 10 nanometers in size 
88. The ratio of the height of the surface to the volume of these 
particles gives the QDs the intermediate electron property 
which is between a mass semiconductor and a discrete atom 
[89]. Over the years, various QDs based techniques such as 
modification of QD conjugates and QD immunostaining have 
been developed. With the improvement of multiplexing 
capability, QDs conjugation greatly exceeds the 
monochromatic experiment in both time and cost-
effectiveness [90]. Moreover, at low protein expression levels 
and in a low context, QD immunostaining is more accurate 
than traditional immunochemical methods. In cancer 
diagnosis, QD immunostaining is a potential tool for the 
detection of various tumor biomarkers, such as a cell protein 
or other components of a heterogeneous tumor sample 91. 
Quantum dots can gather in specific parts of the body and 
transfer the drugs to those parts. The ability of the QDs to 
concentrate in a single internal organ makes them a potential 
solution against untargeted drug delivery, and possibly avoids 
the side effects of chemotherapy. The latest advancement in 
surface modification of QDs, which combine with 
biomolecules, including peptides and antibodies, in vivo, can 
be used to target tumors and make possible their potential 
applications in cancer imaging and treatment. Some studies 
combine QDs with prostate-specific antigen to label cancer, 
while others use QDs to make biomarkers that speed up the 
process with such immune markers having a more stable light 
intensity than traditional fluorescent immunomarkers92. High 
sensitivity probes based on quantum dots have been reported 
for multicolor fluorescence imaging of cancer cells in vivo and 
can also be used to detect ovarian cancer marker cancer 
antigen 125 (CA125) in different types of specimens (such as 
fixed cells, tissue sections, and xenograft) 93. Besides, the light 
stability of quantum dot signals is more concrete and brighter 
than that of traditional organic dyes 94. Chen et al. successfully 
detected BC using quantum-dot-based probes, confirming that 
unlike traditional immunohistochemistry, quantum dot 
immunohistochemistry (IHC) can detect the very low 
expressions of Human Epidermal Growth Factor Receptor 2 
(HER2) as well as multichannel detection95, 96. 

Conclusion and future prospective  

 Nanotechnology has shown a lot of promise in cancer therapy 
over the years. By their improved pharmacokinetic and 
pharmacodynamic properties, nanomaterials have contributed 

to improved cancer diagnosis and treatment. Nanotechnology 
allows targeted drug delivery in affected organs with minimal 
systemic toxicities due to their specificities. However, as with 
other therapeutic options, nanotechnology is not completely 
devoid of toxicities and comes with few challenges with its use 
including systemic and certain organ toxicities, hence, causing 
setbacks with their clinical applications. Given the limitations 
with nanotechnology, more advancement must be done to 
improve drug delivery, maximize their efficacy while keeping 
the disadvantages to the minimum. By improving the 
interactions between the physicochemical properties of the 
nanomaterials employed, safer and more efficacious 
derivatives for diagnosis and treatment can be made available 
for cancer management. In sum, we sought to highlight the key 
advantages of nanotechnology and the shortfalls in their use to 
meet clinical needs for cancer. Adding to that, the therapeutic 
benefits of nanotechnology and future advancements could 
make them a therapeutic potential to be applied in other 
disease conditions. These may include ischemic stroke and 
rheumatoid arthritis which would require targeted delivery of 
a suitable pharmacologic agent at the affected site. 
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