Available online on 15.09.2022 at ijmspr.com

 International Journal of Medical Sciences and Pharma Research 

Open Access to Medical and Research

Copyright  © 2022 The  Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

LC-ESI-MS/MS techniques for Method Development and Validation for Estimation of Propofol In plasma matrix

Sourabh Mittal1*, Neetesh Kumar Jain2, Sourabh Billore3, Riddhi Bajapai4

Department of Quality Assurance, Faculty of Pharmacy, Oriental University Indore-India

2 Department of Pharmacology, Faculty of Pharmacy, Oriental University Indore-India

3 Department of Pharmaceutics, Faculty of Pharmacy, Oriental University Indore-India

4 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Oriental University Indore-India

Article Info:

_____________________________________________

Article History:

Received 21 July 2022   

Reviewed 28 Aug 2022

Accepted 06 Sep 2022

Published 15 Sep 2022 

_____________________________________________

Cite this article as: 

Mittal S, Jain NK, Billore S, Bajapai R, LC-ESI-MS/MS techniques for Method Development and Validation for Estimation of Propofol In plasma matrixInternational Journal of Medical Sciences & Pharma Research, 2022; 8(3):14-21

DOI: http://dx.doi.org/10.22270/ijmspr.v8i3.49         ____________________________________________

*Address for Correspondence:  

Sourabh Mittal1Department of Quality Assurance, Faculty of Pharmacy, Oriental University Indore-India

Abstract

___________________________________________________________________________________________________________________

A compound can often be measured by several methods and the choice of analytical method involves many considerations. Analysis of drugs and their metabolites in a biological matrix is carried out using different extraction techniques like liquid- liquid extraction, solid phase extraction (SPE) and protein precipitation from these extraction methods samples are spiked with calibration (reference) standards and using quality control (QC) samples. These methods and choice of analytical method describes the process of method development and includes sampling, sample preparation, separation, detection and evaluation of the results. The developed process is then validated. These Bioanalytical validations play a significant role in evaluation and interpretation of bioavailability, bioequivalence, pharmacokinetic, and toxicokinetic studies. In which different parameters like accuracy, precision, selectivity, sensitivity, reproducibility, and stability are performed.

Keywords: - LLE, SPE, Quality control samples, Bioequivalence, Bioavailability, Validation.

Email: sourabhbmittal@gmail.com   drnkjain9781@gmail.com 


 

  1. INTRODUCTION: 

To investigate the pharmacokinetic of new drug candidates. To compare pharmacokinetic profiles of different formulations. To monitor drug levels to establish the appropriate dose or frequency of administration. For fast and reliable measurement of the compounds in biological matrices. A bio-analytical method consists of two main components: Sample Preparation. Determination of drug and its metabolites 1.

Sample preparation is a method used to clean up a sample before analysis and to concentrate a sample to improve its detection. Sample preparation in the Bio-analysis: it is the “last frontier” and starting point for the accurate LC-MS/MS analysis. Processing step includes; Method Development, Validation, Assay Performance and Work Flow 2.

1.1 Criteria for Bio-analytical method;

 

1.2 How to develop Bioanalytical Method:

Peak Plasma Concentration (Cmax): In Cmax, maximum concentration of analyte in biological fluid to be determined from literature survey, which is helps in establishment of target sensitivity of the developing method.

Physicochemical Property:   Physicochemical Properties of an analyte of interest such as solubility, molecular weight, structure, melting point, dissociation constant (pKa) which is helps in selection of the suitable extraction method.

Determination of Lowe r and Upper Limit of Quantification: The lowest concentration of an analyte in a sample that can be quantitatively determined with an acceptable precision and accuracy is usually 1/20th of the Cmax value. After calculating ULOQ and LLOQ value have to prepare standard stock solution from which solution of different concentration are prepared 3.

Selection of drug volume to be spiked: The volume of analyte of interest is depends upon the volume of plasma spiked. Analyte concentration is normally 5% of the spiked plasma volume. For Example; if spiked plasma volume is 500 µL, so the volume of analyte to be added will be 25µL.

Sample preparation: Sample preparation technique is used to the clean up a sample by removing endogenous material as well as to concentrate a sample before analysis to exclude errors in its detection 4.

1.3 Application of Bio-Analytical Method:

1.4 Bio-Analytical Method Validation 

1.5 Drug profile: Propofol

Table 1: Major Equipment Used

Equipment

Make

Model

HPLC

Shimadzu

LC10-AD series

Autosampler

Shimadzu

SIL-HTC

ESI

AB Sciex

API 5500

MS-MS

AB Sciex

API 5500

 

Table 2: Working and Reference Standard Details

Details

Drug

Internal Standard

Name

Propofol

Propofol D18

Standard Type

Working Standard

Working Standard

Manufactured By

Splenddid Lab

Splenddid Lab

 

Storage Condition

At 2 - 8 ºC

In Refrigerator & Protect from Normal Light

At 2 - 8 ºC

In Refrigerator & Protect from Normal Light


 

 

 

Table 3: Materials Used

Sr. No.

Material

Purpose

Grade

1.

Propofol

Drug

Working Standard

2.

Propofol D18

Internal Standard

Working Standard

3.

Methanol

Solvent

HPLC

4.

Acetonitrile

Solvent

HPLC

5.

Mili-Q Water

Solvent

In-House

6.

Formic Acid

Extraction Buffer

Emparta

 

7.

 

Extraction Cartridges

Method Development

Strata-X 33µm

Polymeric Reversed Phase30mg/1mL

 

8.

 

Column

Method Development

Kinetex®, 5µm,EVO C18 100 *4. 6 mm

9.

K3EDTA and Sodium

Heparinized Human Plasma

Blank Plasma

In-house

 

 

 

 


 

  1. Preparation of Stock Solutions:

Drug Stock Solution for Propofol (10.000 mg/ml)

Weigh accurately Propofol standard equivalent to 10.0 mg of Propofol and add appropriate volume of Methanol to make final concentration of Propofol equivalent to 10.000 mg/ml. 

ISTD Stock Solution for Propofol D18 (1.000 mg/ml)

Weigh accurately Propofol D18 standard equivalent to 2.0 mg of Propofol D18 and add appropriate volume of Methanol [9] to make final concentration of Propofol D18 equivalent to 1.000 mg/ml.

  1. Preparation of spiking solutions for ISTD and drug:

Weigh accurately Propofol D18 standard equivalent to 2 mg of Propofol D18 and add appropriate volume of Methanol to make final concentration of Propofol D18 equivalent to mg/mL Correct the final concentration for Propofol D18 accounting for its potency and the actual amount weighed. Provide the batch number and store in refrigerator at 5±3°C [10]. Use this solution within 7 days from the date of preparation.

Pipette out 200µL of ISTD stock solution (1.000 mg/mL) and dilute up to 100.0 mL with methanol. Provide the batch number and store in refrigerator at 5 ± 3°C. Use this solution within 2 days from the date of preparation.

Weigh accurately Propofol standard equivalent to 10 mg of Propofol and add appropriate volume of Methanol to make final concentration of Propofol equivalent to 10.000 mg/mL Correct the final concentration for Propofol accounting for its potency and the actual amount weighed. Store in refrigerator at 5±3°C [11]. Use this solution within 7 days from the date of preparation.

Take 0.500mL of Drug Stock Solution, 10.000 mg/mL in polypropylene tube. Make up the volume to 10.0mL with Methanol. Store in refrigerator at 5 ± 3°C. Use this solution within 7 days from the date of preparation.

Prepare the working solution (SS) for DISS [12, 13] in Methanol using Drug Stock solution, 10.000/mL, as described in the table below.

Prepare the CC standards by spiking the respective CC spiking solutions in screened K3EDTA human Plasma [14] as described in the table below:

  1. For storage into deep freezer, aliquot either 0.200 mL or appropriate required volume of each sample into separate pre-labeled tubes cap them and store in deep freezer at - 20±5°C and at -78±8°C.
  2. After aliquoting CC Standards, discard the leftover quantity of samples if any.


 

 

 

 

SS ID

SS

Concentration (ng/mL)

Spiking Volume (mL)

Volume

of Plasma (mL)

Final Volume (mL)

Spiked Concentration (ng/mL)

 

STD ID

Methanol

0.000

0.200

9.800

10.000

0.000

STD BL

SS STD 1

250000.000

0.200

9.800

10.000

5000.000

STD 1

SS STD 2

125000.000

0.200

9.800

10.000

2500.000

STD 2

SS STD 3

50000.000

0.200

9.800

10.000

1000.000

STD 3

SS STD 4

25000.000

0.200

9.800

10.000

500.000

STD 4

SS STD 5

12500.000

0.200

9.800

10.000

250.000

STD 5

SS STD 6

5000.000

0.200

9.800

10.000

100.000

STD 6

SS STD 7

2500.000

0.200

9.800

10.000

50.000

STD 7

SS STD 8

500.000

0.200

9.800

10.000

10.000

STD 8

SS STD 9

250.000

0.200

9.800

10.000

5.000

STD 9

 

 

 

 

Prepare the QC samples by spiking the respective QC spiking solutions [15] in screened K3EDTA human Plasma as described in the table below:

500000.000

1.600

2.400

4.000

200000.000

SS HQC

200000.000

2.000

2.000

4.000

100000.000

SS MQC-1

100000.000

0.500

4.500

5.000

10000.000

SS MQC-2

10000.000

0.750

9.250

10.000

750.000

SS LQC

750.000

3.000

6.000

9.000

250.000

SS LLOQ QC

 

SS ID

SS Concentration (ng/mL)

Spiking volume (mL)

Volume of Plasma (mL)

Final volume (mL)

Spiked Concentration (ng/mL)

QC ID

SS HQC

200000.000

0.200

9.800

10.000

4000.000

HQC

SS MQC1

100000.000

0.200

9.800

10.000

2000.000

MQC1

SS MQC2

10000.000

0.200

9.800

10.000

200.000

MQC2

SS LQC

750.000

0.200

9.800

10.000

15.000

LQC

SS LLOQ QC

250.000

0.200

9.800

10.000

5.000

LLOQ QC

 


 

Aliquot 0.100mL of each standard into separate pre-labeled tubes for processing. Note:

  1. For storage into deep freezer, aliquot either 0.200mL or appropriate required volume of each sample into separate pre-labeled tubes cap them and store in deep freezer at - 20±5°C and at -78±8°C.
  2. After aliquoting QC Samples, discard the leftover quantity of samples if any.

   Preparation of Mobile Phase (Acetonitrile: Mobile Phase Buffer: 70:30v/v,):

Separately measure 700mL of Acetonitrile and 300mL of Mobile Phase Buffer in measuring cylinder. Transfer both the contents into a reagent bottle and mix the contents thoroughly. Store at ambient temperature [16]. Use this solution within 3 days from the date of preparation.


 

 

Table 4: Trials for Optimization of Chromatographic Condition

Sr. No.

Trials

Ratio (% V/V)

Column

Result

1.

Ammonium Carbonate : Methanol

20 : 80

Cosmosil C8

Drug retained in void volume (Rt 0.58)

2.

Ammonium Carbonate :  Acetonitrile

10 : 90

Cosmosil C18

Peak shape was not proper and less response observed at MQC level

3.

Ammonium Carbonate : Acetonitrile

20 : 80

Gemini C18

Good response but tailing was observed

4.

10 mM Ammonium  Formate in Water : Acetonitrile

20 : 80

Gemini C18

Poor chromatography and less response was observed at MQC level

5.

10 mM Ammonium Acetate in Water : Methanol

30 : 70

Gemini C18

Good chromatography but less response was observes at MQC level

6.

10 mM Ammonium Acetate in Water : Methanol

40 : 60

Gemini C18

Good chromatography but less response was observes at

 

  1. Trials for Optimization of Column

Table 5: Trials for Optimization of Column

Sr. No.

Trials

Ratio

Column

Result

9.

10 mM Ammonium Acetate in Water : Acetonitrile

30 : 70

Gemini C18

Good response and good  hromatography was observed (Rt 4.3)

10.

10 mM Ammonium Acetate in Water : Acetonitrile

30 : 70

Cosmosil C18

Tailing was observed (Rt 2.8)

11.

10 mM Ammonium   Acetate in Water : Acetonitrile

30 : 70

EVO C18

Good response and good chromatography was observed (Rt 2.0)

 


 

  1. Extracted sample preparation:

Step 1: Aliquot 0.100 ml of sample into pre-labelled tubes.

Step 2: Add 50 µl of ISTD dilution (2000.000ng/ml) to all the samples except STD BL and vortex for about 30 seconds. Add 50 µl Methanol to STD BL sample.

Step 3: Add 500 µl of Formic Acid in water, 2 % v/v to all samples and vortex to mix.

Step 4: Arrange the required number of pre- labelled Strata-X 33µm Polymeric Reversed Phase 30mg/1ml extraction cartridges [17, 18] on EZYPRESS 48-48 Position Positive Pressure Processor. Condition the cartridges with 1.0ml Methanol followed by 1.0 ml Water.

Step 5: Load the prepared samples on conditioned cartridges carefully.

Step 6: Wash the cartridges with 1.0 ml of Water, followed by Methanol in water, 10

% v/v and dry the cartridges for about 5 minutes by applying positive pressure at maximum flow rate or by applying full vacuum.

Step 7: Elute the contents from the cartridges with 0.300 ml Acetonitrile into pre- labelled tubes.

Step 8: Transfer appropriate volume of each sample into separate pre- labelled Autosampler vials, arrange them in the Autosampler and inject by using LC- ESI-MS/MS.

  1. RESULT AND DISCUSSION:

3.1 Identification of Drug and ISTD

Identification of drug and internal standard was done by using Mass spectrometer. Parent ion and product ion of drug and ISTD.


 

 

Table 6: Q1 and Q3 Mass for Drug and ISTD

Parameter

Drug (Propofol)

ISTD (Propofol D18)

Molecular Weight

178.27

196.38

Q1 Mass

177.0

194.1

Q3 Mass

177.1

194.1

 

Table 7: Optimized Chromatographic Condition

Sr. No.

Chromatographic Parameter

Condition

1.

Mobile Phase

10 mM Ammonium Acetate in Water : Acetonitrile

2.

Column

Kinetex®, 5µm, EVO C18 100 * 4. 6mm

3.

Flow Rate

1.0 ml/minute

4.

Retention Time

At about 2.0 minutes

5.

Run Time

3.0 minutes

6.

Injection Volume

20 µl

7.

Column Oven Temperature

45 ± 3 °C

8.

Autosampler Rinsing Solution

Acetonitrile : Water (50 : 50)

9.

Autosampler Rinsing Volume

1000 µl

10.

Pressure Range

0 – 6200 psi

11.

Purging Time

1.0 minute

12.

Autosampler Temperature

5 ± 3 °C

 

3.2 Precision and Accuracy:

Table 8: Result Table for Intra - run Precision & Accuracy I

P & A

I

LLOQ QC

(5 ng/ml)

LQC

(15 ng/ml)

MQC 2

(200 ng/ml)

MQC 1

(2000 ng/ml)

HQC

(4000 ng/ml)

1.

5.946

13.473

204.792

2084.803

4281.441

2.

4.907

14.123

201.278

2121.824

4227.684

3.

5.748

14.341

203.028

2055.893

4211.849

4.

5.678

14.995

207.765

2166.652

4202.627

5.

6.211

14.504

199.764

2054.608

4140.933

6.

6.206

13.953

192.831

2096.753

4257.130

Mean

5.783

14.232

201.576

2096.756

4220.277

SD

0.483

0.516

5.111

42.668

48.646

% CV

8.36

3.63

2.54

2.03

1.15

% Mean Accuracy

86.47

105.40

99.22

95.39

94.78

 

Table 8: Result Table for Recovery

Sr. No.

HQC

MQC

LQC

Extracted Peak Area

Un- extracted Peak Area

Extracted Peak Area

Un- extracted Peak Area

Extracted Peak Area

Un-extracted Peak Area

1.

18879018

25311751

9094726

12953262

56614

88400

2.

18999513

25461086

9317325

13194222

57251

91886

3.

19158229

25898294

9456934

13329272

58574

92893

4.

19426356

26000707

9582754

13369845

58767

93093

5.

19973295

26065522

9799694

13373909

60608

94143

6.

20543467

26234063

9995869

13871317

62415

94575

Mean

19496646.3

25828570.5

9541217.0

13348637.8

59038.2

92498.3

SD

643599.38

362549.25

326137.88

301603.46

2155.31

2222.53

% CV

3.30

1.40

3.42

2.26

3.65

2.40

% Mean Recovery

75.48

71.48

63.83

Correction Factor

1.00

% Mean Recovery With Correction Factor

75.48

71.48

63.83

% Overall Recovery

78.84

% Overall Recovery With Correction Factor

70.26

% Overall CV

8.43

3.3 Selectivity or Specificity:

Table 9: Result Table for Specificity

Matrix

batch / Lot No.

Drug Response

ISTD Response

STD BL

LLOQ

% Interference

STD BL

LLOQ

% Interference

1.

2

10144

0.02

62

3067912

0.00

2.

17

10367

0.16

270

3197020

0.01

3.

49

9870

0.50

370

3275672

0.01

4.

85

11325

0.75

305

3325910

0.01

5.

72

9872

0.73

312

3578945

0.01

6.

91

10342

0.88

125

3975892

0.00

Haemolysed

82

7373

1.11

63

2304796

0.00

Lipemic

139

11380

1.22

423

3293992

0.01

Na Heparin

75

14207

0.52

51

3498215

0.00

 

3.4 Ruggedness:

Table 10: Result Table for Ruggedness (Different Equipment)

P & A

LLOQ QC

(5 ng/ml)

LQC

(15 ng/ml)

MQC 2

(200 ng/ml)

MQC 1

(2000 ng/ml)

HQC

(4000 ng/ml)

Mean

2.247

14.625

196.844

1989.120

3843.883

SD

0.225

0.635

4.250

15.831

65.852

% CV

4.29

4.34

2.16

0.83

1.71

% Mean

Accuracy

104.94

97.50

98.42

94.91

96.10

 


 

  1. CONCLUSION: 

Inter - run precision for all high, middle and low quality control samples was found to be within acceptance limit of 15.00 %.The method is considered valid for extraction and analysis of Propofol in K3EDTA human samples within investigated concentration range of 5.000 - 5000.000 ng/ml using 0.1 ml processing volume.The validation criteria used in present study is instrument stability, sample preparation strategy, calibration, precision and accuracy, specificity and selectivity of drugs. Upon injection of spiked plasma after a valid extraction procedure into LC-MS/MS instrument at LLOQ, specificity and selectivity shows acceptable results which means that instrument at this lowest concentration is capable to give a reproducible result. There was no significant peak observed from endogenous compounds at retention time of analyte and internal standard which means chromatographic conditions were quite perfect for satisfactory separation within chromatographic run time (2 minutes).The overall matrix effect value: % CV obtained from all 10 plasma lots were < 15 % for both analytes including their ISTD and did not show any peak area differences which means matrix effect does not affect this test procedure and sample preparation strategy used.Further, good results were obtained in plas ma calibration curves. The results obtained from their intra and inter-run precision and accuracy was determined using six sample replicates at four different concentration QC levels (LLOQ QC, LQC, MQC and HQC) that reveals acceptability of data included in accuracy within ± 15.0 % deviation from nominal values and precision of < 15% relative standard deviation(RSD) % CV , except for LLOQ, where it should not exceed < 20 % of deviation which shows that method validated to meet acceptance criteria of industrial guidance for bio-analytical method validation.Hence, it can be concluded that simple, rapid and sensitive isocratic reverse phase liquid chromatographic-tandem mass spectrometric method was devised to quantify Propofol in human plasma and can be successfully applied for bioequivalence studies in human subjects.

REFERNCES:

1. Ahuja S and Rasmussen HT, HPLC Method Development for Pharmaceuticals, Academic Press, 2007, pp. 485-489.

2. Sharma BK, Industrial methods of chemical analysis, 20th edition, GOEL publishing house, 2005, 68-80, 114-165, pp. 286-320.

3. Basics of LC/MS, Primer, Agilent Technologies, Innovating the HP Way, pp. 1- 36.

4. Buick AR, Doig MV, Jeal SC, Land GS and McDowall RD, "Method Validation in the Bio-analytical Laboratory", Journal of Pharmaceutical and Biomedical Analysis, 1990; 8: pp 629-637. https://doi.org/10.1016/0731-7085(90)80093-5

5. Shah VP, Midha KK, Dighe SV, Analytical Method Validation: Bioavailability, Bioequivalence and Pharmacokinetic studies. Pharmaceutical Research 1992; 9:588-592. https://doi.org/10.1023/A:1015829422034

6. Dabhi MJ, Bio-analytical Method Development and its Validation, 2009.

7. Indian Pharmacopoeia, Government of India, Ministry of Health & Family Welfare, Indian Pharmacopoeia commission, Ghaziabad, 2014, vol.-III, 2576 - 2577.

8. British Pharmacopoeia-2016, British pharmacopoeia commission, Volume II Ph Eur monograph 1558(for Propofol) 691.

9. USP-34/NF29 2011, volume II, Asian Ed., United state Pharmacopoeial Convention, Inc., Rockville, MD, 4046 - 4049.

10. Vaiano F., Serpelloni G., Focardi M., Fioravanti A., Mari F., Bertol E., "LC- MS/MS and GC-MS methods in propofol detection: Evaluation of the two analytical procedures", Journal of Pharmaceutical and Biomedical Analysis 39, 2005, 1-6 https://doi.org/10.1016/j.forsciint.2015.07.013

11. Leea S.Y., Parka N., Jeonga E., Wia J., Kimb C., Kim J.Y., Kyo Inc M., Honga J.; "Comparison of GC/MS and LC/MS methods for the analysis of propofol and its metabolites in urine", Journal of Chromatography B 2012; 900:1- 10 https://doi.org/10.1016/j.jchromb.2012.05.011

12. Alvarez J.C., Abe E., Etting I., GuenM.L., Devillier P., Grassin-Delyle S., "Quantification of remifentanil and propofol in human plasma: a LC-MS/MS assay validated according to the EMA guideline", Bioanalysis, 2015, 1675-168 https://doi.org/10.4155/bio.15.89

13. Hamd M., Wada M., Ikeda R., Kawakami S., Nakashima K.; "Validation of an LC-MS/MS Method for the Determination of Propofol, Midazolam, and Carbamazepine in Rat Plasma: Application to Monitor Their Concentrations Following Co-administration", The Pharmaceutical Society of Japan, 2015; 30(8):1250-1253 https://doi.org/10.1248/bpb.b15-00191

14. Pyo J.S.; "Selective and Accurate Determination Method of Propofol in Human Plasma by Mixed-Mode Cation Exchange Cartridge and GC-MS", Journal of analytical methods in chemistry, 2016, 1-6. https://doi.org/10.1155/2016/9531769

15. Ranshang zhang. Propofol Composition and methods of treating chronic pain by administering Propofol derivative United states patent, US8546453 B2, 2013

16. Wilson, Louis j., Dale B., James N. Apparatus and method for modelling and predicting sedative effect of drug such as Propofol on patients, International Patent, US2014/059829, 2014

17. Diaone N. Thompson, Gerold L. Mosher. Formulations containing Propofol and a sulfoalkyl ether cyclodextrin, United states patent, US7034013B2, 2006

18. Bosteels, Arnaud. Combination of Remifentanyl and Propofol, International Patent, PCT/EP2015/080788, 2016