


Analyzing the Role of Hematopoietic Growth Factors in Pregnancy-Related Anemia: A Narrative Review

Emmanuel Ifeanyi Obeagu *,

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Article Info:

Article History:

Received 26 November 2024
Reviewed 23 December 2024
Accepted 17 January 2025
Published 15 March 2025

Cite this article as:

Obeagu EI, Analyzing the Role of Hematopoietic Growth Factors in Pregnancy-Related Anemia: A Narrative Review, International Journal of Medical Sciences & Pharma Research, 2025; 11(1):40-44

DOI: <http://dx.doi.org/10.22270/ijmspr.v11i1.139>

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Abstract

Pregnancy-related anemia is a common and significant health concern that can impact maternal and fetal outcomes. Hematopoietic growth factors, including erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), and thrombopoietin (TPO), are essential regulators of hematopoiesis, influencing red blood cell, white blood cell, and platelet production. This review explores the role of these growth factors in pregnancy-related anemia, examining how they regulate erythropoiesis and immune responses during pregnancy. The article also addresses the therapeutic potential of these factors in managing anemia in pregnant women, highlighting their possible use in cases where conventional treatments, such as iron supplementation, may be insufficient. Erythropoietin, primarily produced by the kidneys, is the main growth factor involved in stimulating red blood cell production. During pregnancy, increased EPO production supports the expanding blood volume and the oxygen demands of the fetus. However, iron deficiency and other nutritional deficiencies can limit the effectiveness of EPO in addressing anemia. Additionally, G-CSF, a growth factor involved in neutrophil production, may have a supporting role in enhancing immune function and reducing infection risks in pregnant women with anemia. Thrombopoietin, involved in platelet production, may also be significant in managing anemia with platelet dysfunction in conditions like preeclampsia.

Keywords: Hematopoietic growth factors, pregnancy-related anemia, erythropoiesis, anemia management, maternal health

Introduction

Pregnancy-related anemia is a prevalent condition that affects a significant proportion of pregnant women globally, especially in developing regions. It is typically characterized by a decrease in hemoglobin levels, which can lead to impaired oxygen transport to both the mother and fetus. Anemia during pregnancy is primarily caused by iron deficiency, but other factors such as folate or vitamin B12 deficiencies, genetic disorders, and chronic conditions like malaria or sickle cell disease also contribute to its onset. According to the World Health Organization (WHO), anemia in pregnancy affects nearly 40% of women worldwide, making it a major public health concern. This condition not only increases the risk of maternal fatigue, infection, and hemorrhage but also poses significant threats to fetal development, leading to adverse outcomes such as preterm birth, low birth weight, and developmental delays.

Hematopoiesis, the process by which blood cells are produced, plays a vital role in ensuring adequate red blood cell levels during pregnancy. During pregnancy, there is a marked increase in blood volume to meet the growing oxygen demands of the fetus. Hematopoietic growth factors are key regulators in this process,

particularly erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), and thrombopoietin (TPO). EPO, produced mainly by the kidneys, is the principal growth factor involved in stimulating erythropoiesis. It increases red blood cell production in response to hypoxia or anemia. Similarly, G-CSF, which is involved in the production of neutrophils, plays a significant role in immune defense, and TPO, responsible for regulating platelet production, may have implications in managing complications related to pregnancy-related anemia, such as preeclampsia.

Despite the body's compensatory mechanisms, such as increased erythropoietin production in response to anemia, many pregnant women still experience challenges in maintaining adequate hemoglobin levels due to iron and other nutrient deficiencies. The insufficient availability of iron, necessary for hemoglobin synthesis, is a critical limitation to effective erythropoiesis. As a result, anemia becomes more pronounced during pregnancy, particularly in the second and third trimesters when fetal growth accelerates and iron demand peaks. This condition is further compounded by a lack of sufficient clinical interventions tailored to address the underlying causes of anemia and the role of hematopoietic growth factors in erythropoiesis.

In response to anemia, the body's production of erythropoietin increases, but in cases of iron deficiency or other underlying factors, the effectiveness of EPO may be compromised. Furthermore, iron supplementation, which is commonly prescribed to pregnant women with anemia, does not always resolve the issue, especially when iron absorption is impaired or when there are concurrent deficiencies in other key nutrients like folate and vitamin B12. Therefore, understanding the physiological role of hematopoietic growth factors in the regulation of anemia during pregnancy is crucial for developing more effective treatment strategies. This knowledge is particularly important for women with complex or chronic anemia who may not respond to standard iron supplementation alone.

The therapeutic potential of hematopoietic growth factors, particularly erythropoietin, has been studied in the context of pregnancy-related anemia, with promising results in some cases. Recombinant human erythropoietin (rHuEPO) has been used to improve hemoglobin levels and reduce the need for blood transfusions in non-pregnant individuals with chronic anemia. However, its application in pregnancy is more restricted due to concerns regarding safety, including the potential for adverse fetal outcomes and the risk of maternal hypertension. Similarly, while G-CSF and TPO have shown promise in other clinical settings, their application in pregnancy-related anemia and associated complications requires further investigation to ensure safety and efficacy for both the mother and fetus.

Prevalence and Causes of Pregnancy-Related Anemia

Pregnancy-related anemia is a widespread condition affecting a significant proportion of pregnant women, with global estimates indicating that approximately 40% of pregnant women are anemic. The prevalence varies based on geographic location, socioeconomic status, and access to healthcare, with higher rates observed in low-income and developing countries. According to the World Health Organization (WHO), anemia during pregnancy remains a major public health concern, contributing to maternal morbidity and mortality. In some regions, such as sub-Saharan Africa and South Asia, the prevalence of anemia in pregnancy can be as high as 50-70%, while it is relatively lower in high-income countries due to better access to prenatal care and nutritional supplements.

The primary cause of pregnancy-related anemia is iron deficiency, which accounts for up to 80% of cases globally. During pregnancy, the demand for iron increases due to the expansion of maternal blood volume and the growth of the fetus and placenta. If this increased iron demand is not met through diet or supplementation, the body may not be able to produce an adequate number of red blood cells, leading to anemia. Other nutritional deficiencies, such as folate and vitamin B12, can also contribute to anemia, particularly in women with poor diets or those who do not take prenatal vitamins. Folate and vitamin B12 are essential for red blood cell production, and their deficiency can

lead to megaloblastic anemia, a type of anemia characterized by the production of abnormally large red blood cells.

Apart from nutritional deficiencies, other causes of pregnancy-related anemia include chronic diseases, genetic conditions, and infections. For example, women with conditions like sickle cell disease, thalassemia, or autoimmune disorders are at an increased risk of anemia during pregnancy due to their bodies' impaired ability to produce normal red blood cells. Infections such as malaria, which is prevalent in certain tropical regions, can also contribute to anemia by destroying red blood cells or impairing the body's ability to produce them. Additionally, excessive blood loss during pregnancy, such as in the case of hemorrhagic conditions like placenta previa or placental abruption, can lead to anemia. These various causes underscore the complex and multifactorial nature of pregnancy-related anemia and highlight the need for comprehensive screening and management strategies to address the condition.

Hematopoietic Growth Factors and Their Role in Pregnancy-Related Anemia

Hematopoietic growth factors are essential regulators of blood cell production, influencing the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). In pregnancy, these factors play a crucial role in maintaining optimal hematopoiesis to meet the increased blood volume and oxygen demands required by both the mother and fetus. Among the key hematopoietic growth factors involved in pregnancy-related anemia are erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), and thrombopoietin (TPO). These growth factors support the production of blood cells and help to address anemia during pregnancy, particularly in cases where iron deficiency or other nutritional deficiencies are the underlying causes.

Erythropoietin (EPO) is the most prominent hematopoietic growth factor involved in pregnancy-related anemia. EPO is primarily produced by the kidneys in response to hypoxia or reduced oxygen levels in the blood. During pregnancy, the demand for oxygen increases due to the growing fetus, and the mother's body compensates by increasing EPO production to stimulate the production of red blood cells. This increase in red blood cell production helps to expand the maternal blood volume to support fetal growth and oxygen supply. However, in cases of iron deficiency anemia, the effectiveness of EPO can be compromised, as there may not be enough iron available for the production of hemoglobin, which is necessary for red blood cell function. Additionally, some studies suggest that iron deficiency can suppress the bone marrow's response to EPO, exacerbating anemia.

Granulocyte-Colony Stimulating Factor (G-CSF), another hematopoietic growth factor, plays a pivotal role in regulating the production of neutrophils, a type of white blood cell important for immune defense.

Although G-CSF is not directly involved in erythropoiesis, it has been shown to have indirect effects on anemia, particularly in situations where anemia is accompanied by immune system dysfunction or infection. Pregnant women, particularly those with underlying conditions such as infections or immune deficiencies, may experience an increased risk of neutropenia (low neutrophil count), which can further complicate anemia. G-CSF may help enhance neutrophil production, reducing the risk of infections, and improving overall immune health in pregnant women with anemia, which in turn can support a healthier pregnancy and reduce the potential for anemia-related complications.

Thrombopoietin (TPO), a growth factor responsible for regulating platelet production, may also be relevant in the context of pregnancy-related anemia. TPO is primarily produced by the liver and acts on the bone marrow to stimulate the production of platelets, which are critical for clotting and wound healing. In conditions such as preeclampsia, where anemia is often accompanied by platelet dysfunction, TPO may have therapeutic potential in improving platelet counts and mitigating bleeding risks. Additionally, some studies suggest that TPO levels may be altered in pregnant women with anemia, potentially affecting platelet production and function. While thrombopoietin's direct role in pregnancy-related anemia remains less explored, it is likely to be an important factor in regulating the hematological changes that occur during pregnancy.

Therapeutic Applications of Hematopoietic Growth Factors in Anemia Management

Hematopoietic growth factors, particularly erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), and thrombopoietin (TPO), have been extensively studied for their therapeutic potential in the management of anemia, including pregnancy-related anemia. These factors play pivotal roles in the regulation of blood cell production, and their therapeutic use aims to improve hematologic parameters in patients with anemia, enhance immune function, and support overall maternal and fetal health during pregnancy. While their use remains somewhat limited due to safety concerns, ongoing research is exploring their role in enhancing the effectiveness of anemia treatments, especially in complex or severe cases.

Erythropoietin (EPO) has the most well-established therapeutic application in anemia management, particularly in non-pregnant populations with chronic kidney disease, cancer, and other conditions that lead to anemia. Recombinant human erythropoietin (rHuEPO) has been used effectively to treat anemia by stimulating erythropoiesis, thereby increasing red blood cell count and improving oxygen delivery to tissues. In pregnancy-related anemia, EPO therapy can be beneficial, especially in cases of anemia that do not respond to iron supplementation alone. This is particularly relevant in pregnant women with anemia secondary to conditions such as chronic renal disease or in women with insufficient bone marrow response to iron

supplementation. Studies have shown that rHuEPO can help increase hemoglobin levels and reduce the need for blood transfusions in such cases. However, the use of EPO in pregnancy requires careful monitoring, as excessive stimulation of erythropoiesis can lead to adverse effects, including hypertension, preeclampsia, and other complications.

Granulocyte-Colony Stimulating Factor (G-CSF) has a more indirect role in the management of anemia, particularly in cases complicated by infections or immune system dysfunction. G-CSF is primarily used to stimulate the production of neutrophils, a type of white blood cell that is critical for immune defense. While it does not directly influence red blood cell production, it can be valuable in pregnant women with anemia who are also at increased risk of infection or neutropenia. Conditions such as autoimmune diseases, infections, or chemotherapy-induced neutropenia may lead to an elevated risk of infections and a compromised immune system, which in turn can exacerbate anemia. G-CSF can improve neutrophil counts, help control infections, and, by maintaining a robust immune system, indirectly contribute to better outcomes in anemia management. However, the use of G-CSF during pregnancy is not well established, and its safety and efficacy require further investigation.

Thrombopoietin (TPO), which regulates platelet production, has emerged as a therapeutic candidate in conditions where anemia is associated with thrombocytopenia (low platelet count) or platelet dysfunction. Pregnancy-related anemia, particularly in women with conditions like preeclampsia, can often be accompanied by abnormal platelet levels, which may contribute to bleeding complications or other adverse outcomes. Although TPO's primary role is in platelet production, its potential application in managing anemia-related thrombocytopenia has been explored in clinical settings. TPO therapy has been shown to increase platelet counts in patients with thrombocytopenia, and this therapeutic approach may be beneficial in pregnant women at risk for bleeding due to concurrent anemia. However, the use of TPO remains largely experimental in pregnancy, with limited studies on its safety and efficacy during gestation. More research is needed to determine optimal dosing and identify potential risks to both the mother and fetus.

In addition to individual growth factors, combinations of these hematopoietic growth factors are also being investigated for their potential to manage anemia more effectively. For example, combining EPO with iron supplementation or other hematopoietic agents may enhance the body's ability to produce red blood cells and improve overall hematologic status in pregnant women with anemia. This multi-faceted approach could address multiple aspects of anemia, including iron deficiency, impaired erythropoiesis, and immune system dysfunction. However, the clinical application of combined therapies requires careful consideration of the risks and benefits, especially in pregnant women, as the safety profile of many hematopoietic growth factors has not been fully established in this population.

Conclusion

Hematopoietic growth factors, particularly erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), and thrombopoietin (TPO), offer significant therapeutic potential for managing pregnancy-related anemia. EPO, being the most well-established among these factors, plays a crucial role in stimulating red blood cell production, particularly in cases where anemia is resistant to traditional iron supplementation. Similarly, G-CSF and TPO, while primarily involved in immune and platelet regulation, may offer indirect benefits for pregnant women facing anemia with concurrent immune or platelet dysfunction. These growth factors, when used appropriately, could enhance maternal and fetal health by improving hematologic parameters, reducing the risk of complications, and supporting immune function.

However, the application of hematopoietic growth factors in pregnancy requires a careful balance of benefits and risks. While these factors offer promising therapeutic avenues, their use during pregnancy is still under investigation, and much remains to be explored regarding their safety profiles, optimal dosing, and long-term effects on both the mother and fetus. The combination of growth factors with other treatments, such as iron supplementation, could further optimize anemia management, but such approaches must be personalized and carefully monitored. As research continues to advance, hematopoietic growth factors may become integral components of a more tailored and effective strategy for managing pregnancy-related anemia, particularly in high-risk populations.

Conflict of Interest: Author declares no potential conflict of interest with respect to the contents, authorship, and/or publication of this article.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting in this paper are available in the cited references.

Ethics approval: Not applicable.

References

1. Owais A, Merritt C, Lee C, Bhutta ZA. Anemia among women of reproductive age: an overview of global burden, trends, determinants, and drivers of progress in low-and middle-income countries. *Nutrients*. 2021; 13(8):2745. <https://doi.org/10.3390/nu13082745> PMid:34444903 PMCid:PMC8401240
2. World Health Organization. Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia. 2008.
3. Agreen FC, Obeagu EI. Anemia among pregnant women: A review of African pregnant teenagers. *Journal of Public Health and Nutrition*. 2023;6(1):138.
4. Obeagu EI, Obeagu GU, Chukwueze CM, Ikpenwa JN, Ramos GF. Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri metropolis. *Madonna University journal of Medicine and Health Sciences*. 2022; 2(2):1-9.
5. Means RT. Iron deficiency and iron deficiency anemia: implications and impact in pregnancy, fetal development, and early childhood parameters. *Nutrients*. 2020; 12(2):447. <https://doi.org/10.3390/nu12020447> PMid:32053933 PMCid:PMC7071168
6. Obeagu EI, Adepoju OJ, Okafor CJ, Obeagu GU, Ibekwe AM, Okpala PU, Agu CC. Assessment of Haematological Changes in Pregnant Women of Ido, Ondo State, Nigeria. *J Res Med Dent Sci*. 2021 Apr;9(4):145-8.
7. Obeagu EI, Obeagu GU. Neonatal Outcomes in Children Born to Mothers with Severe Malaria, HIV, and Transfusion History: A Review. *Elite Journal of Nursing and Health Science*, 2024; 2(3): 38-58
8. Sapehia D, Mahajan A, Srinivasan R, Kaur J. Pre-natal dietary imbalance of folic acid and vitamin B12 deficiency adversely impacts placental development and fetal growth. *Placenta*. 2023; 132:44-54. <https://doi.org/10.1016/j.placenta.2023.01.003> PMid:36657272
9. Obeagu EI, Obeagu GU. Sickle cell anaemia in pregnancy: a review. *International Research in Medical and Health Sciences*. 2023 Jun 10;6(2):10-3. <https://doi.org/10.22270/ijmspr.v10i2.103>
10. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. *Elite Journal of Haematology*. 2024;2(3):67-80.
11. Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. *Int J Curr Res Chem Pharm Sci*. 2016;3(3):10-8. <https://doi.org/10.22270/ijmspr.v10i2.95>
12. Muñoz M, Peña-Rosas JP, Robinson S, Milman N, Holzgreve W, Breymann C, Goffinet F, Nizard J, Christory F, Samama CM, Hardy JF. Patient blood management in obstetrics: management of anaemia and haematinic deficiencies in pregnancy and in the post-partum period: NATA consensus statement. *Transfusion medicine*. 2018; 28(1):22-39. <https://doi.org/10.1111/tme.12443> PMid:28722245
13. Breymann C. Iron deficiency anemia in pregnancy. In *Seminars in hematology* 2015; 52(4):339-347. WB Saunders. <https://doi.org/10.1053/j.seminhematol.2015.07.003> PMid:26404445
14. Obeagu EI, Influence of Hemoglobin Variants on Vaso-Occlusive Phenomena in Sickle Cell Anemia: A Review, *International Journal of Medical Sciences and Pharma Research*. 2024;10(2):54-59 <https://doi.org/10.22270/ijmspr.v10i2.104>
15. Rashid S, Meier V, Patrick H. Review of Vitamin B12 deficiency in pregnancy: a diagnosis not to miss as veganism and vegetarianism become more prevalent. *European journal of haematology*. 2021; 106(4):450-455. <https://doi.org/10.1111/ehj.13571> PMid:33341967
16. Jagnade RS, Bharat R, Singh P. Association Between Systemically Healthy Chronic Periodontitis Pregnant Female Subjects and Anemia of Chronic Diseases: A Clinical Study. *Journal of Advanced Medical and Dental Sciences Research*. 2018;6(9):88-95.
17. Barrera-Reyes PK, Tejero ME. Genetic variation influencing hemoglobin levels and risk for anemia across populations. *Annals of the New York Academy of Sciences*. 2019; 1450(1):32-46. <https://doi.org/10.1111/nyas.14200> PMid:31385320
18. Ajugwo A, Opigo RU, Obeagu EI, Prevalence of Anaemia and Associated Factors in Lactating Mothers Accessing Health Services at Ishaka Adventist Hospital, Bushenyi District, *Asian Journal of Dental and Health Sciences*, 2023;3(2):1-6 <https://doi.org/10.22270/ajdhs.v3i2.37>
19. Eweis M, Farid EZ, El-Malky N, Abdel-Rasheed M, Salem S, Shawky S. Prevalence and determinants of anemia during the third trimester of pregnancy. *Clinical Nutrition ESPEN*. 2021;44:194-199. <https://doi.org/10.1016/j.clnesp.2021.06.023> PMid:34330465
20. Babker AM, Di Elnaim EO, Hematological changes during all trimesters in normal pregnancy, *Journal of Drug Delivery and Therapeutics*. 2020;10(2):1-4 <https://doi.org/10.22270/jddt.v10i2.3958>

21. Siteti MC, Namasaka SD, Ariya OP, Injete SD, Wanyonyi WA. Anaemia in pregnancy: Prevalence and possible risk factors in Kakamega County, Kenya. *Science journal of public health*. 2014;2(3):216-222. <https://doi.org/10.11648/j.sjph.20140203.23>

22. Kumar SB, Arnipalli SR, Mehta P, Carrau S, Ziouzenkova O. Iron deficiency anemia: efficacy and limitations of nutritional and comprehensive mitigation strategies. *Nutrients*. 2022; 14(14):2976. <https://doi.org/10.3390/nu14142976> PMid:35889932 PMCid:PMC9315959

23. Pai RD, Chong YS, Clemente-Chua LR, Irwinda R, Huynh TN, Wibowo N, Gamilla MC, Mahdy ZA. Prevention and management of iron deficiency/iron-deficiency anemia in women: an Asian expert consensus. *Nutrients*. 2023; 15(14):3125. <https://doi.org/10.3390/nu15143125> PMid:37513543 PMCid:PMC10383547

24. Muñoz M, Peña-Rosas JP, Robinson S, Milman N, Holzgreve W, Breymann C, Goffinet F, Nizard J, Christory F, Samama CM, Hardy JF. Patient blood management in obstetrics: management of anaemia and haematinic deficiencies in pregnancy and in the post-partum period: NATA consensus statement. *Transfusion medicine*. 2018;28(1):22-39. <https://doi.org/10.1111/tme.12443> PMid:28722245

25. Shi H, Chen L, Wang Y, Sun M, Guo Y, Ma S, Wang X, Jiang H, Wang X, Lu J, Ge L. Severity of anemia during pregnancy and adverse maternal and fetal outcomes. *JAMA network open*. 2022;5(2):e2147046-. <https://doi.org/10.1001/jamanetworkopen.2021.47046> PMid:35113162 PMCid:PMC8814908

26. World Health Organization. Guideline: daily iron and folic acid supplementation in pregnant women. World Health Organization; 2012.

27. Obeagu EI, Obeagu GU. Sickle cell anaemia in pregnancy: a review. *International Research in Medical and Health Sciences*. 2023 Jun 10;6(2):10-3. <https://doi.org/10.22270/ijmspr.v10i2.103>

28. Obeagu EI, Ubosi NI, Uzoma G. Antioxidant Supplementation in Pregnancy: Effects on Maternal and Infant Health. *Int. J. Adv. Multidiscip. Res.* 2023;10(11):60-70.

29. Obeagu EI, Ubosi NI, Uzoma G. Antioxidant Supplementation in Pregnancy: Effects on Maternal and Infant Health. *Int. J. Adv. Multidiscip. Res.* 2023;10(11):60-70.

30. Obeagu EI, Obeagu GU. Enhancing Maternal and Fetal Well-being: The Role of Antioxidants in Pregnancy. *Elite Journal of Medical Sciences*. 2024;2(4):76-87.

31. Obeagu EI, Obeagu GU. Antioxidant Supplementation and Prevention of Early Pregnancy Loss: A Narrative Review. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2024;11(9):28-37. <https://doi.org/10.22270/ijmspr.v10i4.120>

32. Obeagu EI, Obeagu GU. Molar Pregnancy: Update of prevalence and risk factors. *Int. J. Curr. Res. Med. Sci.* 2023;9(7):25-8. <https://doi.org/10.19080/JGWH.2023.25.556169>

33. Obeagu EI, Obeagu GU. Hypoxia-induced Metabolic Changes in Pregnancy: Clinical Perspectives. *Elite Journal of Medicine*. 2024;2(8):50-9.

34. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. *Elite Journal of Haematology*. 2024;2(3):67-80.

35. Obeagu EI, Obeagu GU, Ezeonwumelu JO. Safety and Efficacy of Blood Transfusions in Pregnant Women. *Elite Journal of Haematology*, 2024; 2 (3):96-106.

36. Obeagu EI, Obeagu GU. Hypoxia in Pregnancy: Implications for Fetal Development. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2024;11(7):39-50. <https://doi.org/10.22270/ijmspr.v10i4.123>