

Available online on 15.12.2024 at ijmspr.com

International Journal of Medical Sciences and Pharma Research

Open Access to Medical Science and Pharma Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Review Article

Antioxidants and the Prevention of Neonatal Jaundice: A Narrative Review

Emmanuel Ifeanyi Obeagu 1* and Getrude Uzoma Obeagu 2

- ¹ Department of Medical Laboratory Science, Kampala International University, Uganda.
- ² School of Nursing Science, Kampala International University, Uganda.

Article Info:

Article History:

Received 13 August 2024 Reviewed 19 September 2024 Accepted 16 October 2024 Published 15 December 2024

Cite this article as:

Obeagu EI, Obeagu GU, Antioxidants and the Prevention of Neonatal Jaundice: A Narrative Review, International Journal of Medical Sciences & Pharma Research, 2024; 10(4):28-34 DOI:

http://dx.doi.org/10.22270/ijmspr.v10i4.120

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Medical Laboratory Science, Kampala International University, Uganda

Abstract

Neonatal jaundice, characterized by elevated bilirubin levels in newborns, is a common condition that can lead to severe complications like kernicterus if not managed effectively. Emerging evidence suggests that oxidative stress plays a critical role in the development of neonatal jaundice by exacerbating red blood cell breakdown and overwhelming the body's ability to process bilirubin. This review explores the potential of antioxidant supplementation as a therapeutic strategy for mitigating oxidative stress and preventing severe neonatal hyperbilirubinemia. The body's natural antioxidant defense systems, including enzymes like superoxide dismutase and non-enzymatic antioxidants like vitamins C and E, are often underdeveloped in newborns, particularly in preterm infants. This deficiency leaves them more vulnerable to oxidative damage, increasing the risk of jaundice. Antioxidants, which neutralize free radicals, may help reduce bilirubin levels and prevent the escalation of jaundice to dangerous levels.

Keywords: Neonatal jaundice, antioxidants, bilirubin, oxidative stress, kernicterus.

Introduction

Neonatal jaundice is a widespread clinical condition that affects approximately 60% of full-term newborns and 80% of preterm infants during the first week of life. It manifests as yellow discoloration of the skin and sclera, primarily due to the accumulation of bilirubin in the blood (hyperbilirubinemia). While neonatal jaundice is often a transient and self-limiting condition, it can lead to severe neurological damage, known as kernicterus, if left untreated. Managing bilirubin levels is crucial to prevent adverse outcomes, and current treatment options include phototherapy and, in severe cases, exchange transfusion. However, these interventions do not directly address the underlying mechanisms contributing hyperbilirubinemia, particularly the role of oxidative stress in neonatal jaundice.¹⁻³ Oxidative stress, defined as an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defense systems, plays a pivotal role in the pathophysiology of neonatal jaundice. Newborns, especially preterm infants, are more susceptible to oxidative stress due to underdeveloped antioxidant systems and increased vulnerability to oxidative damage. The process of bilirubin production involves the breakdown of heme, which generates ROS and can overwhelm the infant's immature antioxidant defenses, leading to elevated bilirubin levels. The correlation between oxidative stress

and neonatal jaundice suggests that antioxidant supplementation could be an innovative approach to mitigate bilirubin production and prevent severe hyperbilirubinemia.⁴⁻⁶ Recent studies have explored the potential of antioxidants, such as vitamins C and E, melatonin, and glutathione, in reducing oxidative damage and improving neonatal outcomes. Antioxidants function by neutralizing ROS and reducing oxidative stress, which in turn may help control bilirubin levels. However, despite promising preliminary findings, clinical trials on the efficacy and safety of antioxidant supplementation for neonatal jaundice are still limited. This narrative review aims to provide a comprehensive overview of the role of oxidative stress in neonatal jaundice, the body's antioxidant defense systems, and the potential for antioxidant therapies to prevent and manage this condition.7-9

Neonatal jaundice results from the imbalance between bilirubin production and elimination, where bilirubin levels exceed the liver's capacity for conjugation and excretion. Bilirubin is produced during the breakdown of red blood cells (RBCs), which is accelerated in newborns due to their shorter RBC lifespan. The liver enzyme, UDP-glucuronosyltransferase (UGT), is responsible for converting bilirubin into a water-soluble form for excretion. In newborns, especially preterm infants, UGT activity is low, leading to an accumulation of

ISSN: 2394-8973 [28

unconjugated bilirubin in the blood. This condition can worsen if oxidative stress further damages RBCs, increasing bilirubin production beyond the liver's capacity to process it. Oxidative stress arises when the generation of ROS, such as superoxide anions and hydrogen peroxide, surpasses the antioxidant capacity of cells. In newborns, especially those born prematurely, the balance between pro-oxidants and antioxidants is skewed, as their enzymatic and non-enzymatic antioxidant systems are immature. Factors such as hypoxia, infection, and metabolic disturbances can exacerbate ROS production, which accelerates the degradation of RBCs and contributes to the development of neonatal jaundice. The link between oxidative stress and jaundice highlights the importance of maintaining adequate antioxidant defenses during the neonatal period to reduce the risk of hyperbilirubinemia. 10-14

Newborns possess a range of antioxidant defense mechanisms, but these systems are often insufficient to counteract the heightened oxidative stress they enzymatic antioxidants include experience. Key superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work together to detoxify ROS and protect cells from oxidative damage. Non-enzymatic antioxidants, such as vitamins C and E, play a crucial role in scavenging free radicals and preventing lipid peroxidation, a process that damages cell membranes. In newborns, especially those born prematurely, the activity of these antioxidants is reduced, making them more susceptible to oxidative damage and its consequences, including neonatal jaundice. Given the role of oxidative stress in the pathogenesis of neonatal jaundice, antioxidant supplementation has been proposed as a potential therapeutic strategy. Studies on antioxidants like vitamin C and vitamin E have demonstrated their ability to reduce ROS levels and improve bilirubin metabolism in neonates. Melatonin, a potent antioxidant, has also been shown to protect against oxidative damage in various neonatal conditions, including jaundice. These findings suggest that antioxidant therapy could be an adjunct or alternative to traditional treatments like phototherapy, particularly for infants at high risk of severe hyperbilirubinemia. 15-19

Mechanisms of Oxidative Stress in Neonatal Jaundice

Oxidative stress plays a critical role in the development and progression of neonatal jaundice, primarily by increasing red blood cell (RBC) breakdown and overwhelming the newborn's capacity to metabolize bilirubin. Newborns, especially preterm infants, are more susceptible to oxidative stress due to immature antioxidant systems and the high metabolic demands of the early neonatal period. Several mechanisms contribute to oxidative stress in neonates, leading to the excessive production of bilirubin and the subsequent risk of hyperbilirubinemia.²⁰⁻²¹

1. Increased Red Blood Cell Breakdown

One of the primary factors contributing to neonatal jaundice is the increased turnover of RBCs. Neonates have a shorter RBC lifespan (approximately 70 to 90

days) compared to adults (120 days), leading to a higher rate of hemolysis. The breakdown of RBCs releases heme, which is converted into biliverdin and then reduced to bilirubin. This process, known as heme catabolism, is oxygen-dependent and results in the generation of reactive oxygen species (ROS), particularly during the degradation of hemoglobin. The excessive production of ROS, in turn, leads to oxidative damage to cell membranes and further accelerates hemolysis, creating a vicious cycle that contributes to elevated bilirubin levels. Premature infants, who often experience increased hemolysis due to underdeveloped erythropoiesis and the presence of immature RBCs, are at an even higher risk of oxidative stress-induced hyperbilirubinemia. The excessive release of free iron during hemolysis further exacerbates oxidative stress, as free iron catalyzes the formation of highly reactive hydroxyl radicals through the Fenton reaction. This oxidative damage to RBCs results in increased bilirubin production, which the immature liver of a newborn struggles to conjugate and excrete effectively.22-24

2. Immature Liver Enzyme Systems

In neonates, the liver enzyme UDP-glucuronosyltransferase (UGT1A1) responsible for conjugating bilirubin is underdeveloped, particularly in preterm infants. Unconjugated bilirubin is lipophilic and cannot be easily excreted from the body, leading to its accumulation in the bloodstream. This is compounded by oxidative stress, which damages hepatocytes and further reduces their ability to process and conjugate bilirubin efficiently. Oxidative stress can also impair mitochondrial function within hepatocytes, reducing energy production and limiting the liver's ability to detoxify bilirubin and other metabolites. The reduced activity of antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase in neonatal liver cells further exacerbates oxidative damage, contributing to the persistence of unconjugated hyperbilirubinemia.²⁵⁻²⁶

3. Inflammatory Responses and Infections

Inflammatory responses and infections, common in neonates due to their developing immune systems, can significantly increase oxidative stress and the risk of jaundice. Inflammation triggers the release of proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- α), which stimulate the production of ROS by neutrophils and macrophages. These ROS not only cause further hemolysis but also impair the function of hepatocytes, reducing the liver's ability to conjugate and excrete bilirubin. Sepsis and other infections commonly seen in neonatal intensive care units (NICUs) have been linked to increased oxidative stress and higher incidences of severe hyperbilirubinemia, making antioxidant defense strategies crucial in mitigating this risk.²⁷⁻²⁸

Antioxidant Defense Systems in Newborns

Newborns, particularly preterm infants, have immature antioxidant defense systems, making them more vulnerable to oxidative stress and its complications, such as neonatal jaundice. Antioxidant defense systems are critical in neutralizing reactive oxygen species (ROS) and

ISSN: 2394-8973 [29]

other free radicals generated during physiological processes like red blood cell (RBC) breakdown. These defense mechanisms include enzymatic and non-enzymatic antioxidants that work together to protect cells from oxidative damage. However, the underdeveloped state of these systems in newborns contributes to a heightened susceptibility to oxidative stress-related conditions.²⁹⁻³⁰

1. Enzymatic Antioxidant Defense

The enzymatic antioxidant system is one of the primary lines of defense against oxidative stress in newborns. The key enzymes involved in this system are:

- Superoxide Dismutase (SOD): SOD is responsible for catalyzing the dismutation of superoxide radicals (O2•–) into oxygen and hydrogen peroxide (H2O2). In newborns, particularly preterm infants, SOD activity is lower compared to adults, leading to the accumulation of superoxide radicals, which contribute to oxidative stress. SOD exists in two forms: cytosolic copper-zinc SOD (CuZnSOD) and mitochondrial manganese SOD (MnSOD). While both forms are present in newborns, their activity levels are significantly reduced during the early neonatal period.³¹⁻³²
- Glutathione Peroxidase (GPx): GPx plays a crucial role in reducing hydrogen peroxide to water, thus preventing the formation of highly reactive hydroxyl radicals (•OH). This enzyme uses glutathione (GSH) as a substrate and is essential in protecting cell membranes from oxidative damage. Newborns have lower levels of both GPx and GSH, reducing their capacity to detoxify hydrogen peroxide and increasing their risk of oxidative damage.³³
- Catalase: Catalase is another enzyme that breaks down hydrogen peroxide into water and oxygen. Although catalase is present in newborns, its activity is reduced in preterm infants. The reduced activity of catalase, in conjunction with lower GPx levels, makes it difficult for newborns to efficiently eliminate hydrogen peroxide, further contributing to oxidative stress.³⁴

2. Non-Enzymatic Antioxidant Defense

In addition to enzymatic antioxidants, non-enzymatic antioxidants are vital in mitigating oxidative stress in newborns. These include:

- **Glutathione (GSH):** GSH is a tripeptide composed of glutamate, cysteine, and glycine, and it serves as a major intracellular antioxidant. It acts as a substrate for GPx, helping neutralize hydrogen peroxide and other peroxides. In newborns, especially preterm infants, the levels of GSH are lower, limiting their ability to combat oxidative stress effectively. This deficiency is compounded by the fact that newborns have a reduced capacity for synthesizing GSH, further impairing their antioxidant defense.³⁵
- Vitamins C and E: Vitamin C (ascorbic acid) and vitamin E (α-tocopherol) are potent non-enzymatic antioxidants. Vitamin C is water-soluble and

neutralizes ROS in the aqueous compartments of cells, while vitamin E, a fat-soluble antioxidant, protects cell membranes from lipid peroxidation. However, vitamin E levels are lower in newborns, particularly in preterm infants, making them more prone to oxidative damage. While vitamin C levels in neonates are generally adequate, its role in recycling oxidized vitamin E is crucial for maintaining cellular antioxidant defense.³⁶

• **Bilirubin:** Although typically associated with neonatal jaundice, bilirubin itself is a potent antioxidant in low concentrations. It can neutralize ROS and protect against oxidative damage. However, when bilirubin levels become excessively high, as seen in jaundiced newborns, it can have toxic effects, particularly in the brain, leading to conditions such as kernicterus.³⁷

3. Developmental Immaturity and Antioxidant Capacity

The overall antioxidant capacity of newborns is significantly reduced due to their developmental immaturity. In utero, the fetus exists in a relatively lowoxygen environment, and the transition to the higher oxygen levels after birth induces oxidative stress. Preterm infants, who are born before full maturation of their antioxidant systems, face even greater challenges. Their enzymatic and non-enzymatic antioxidant defenses are less developed, making them more vulnerable to oxidative stress-related conditions like neonatal jaundice, respiratory distress, and other complications. Moreover, the demand for antioxidants increases after birth due to the sudden exposure to oxygen and the metabolic adaptations required for life outside the womb. The imbalance between increased ROS production and insufficient antioxidant defenses leads to oxidative stress, which can have significant implications for neonatal health.³⁸⁻³⁹

4. Antioxidant Supplementation and its Role

Given the underdeveloped antioxidant systems in newborns, particularly in preterm infants, antioxidant supplementation is often considered as a therapeutic approach to reduce oxidative stress. Supplementation with vitamins C and E, as well as other antioxidants like selenium, has been explored to enhance the neonatal antioxidant capacity and mitigate the effects of oxidative stress. However, the optimal dosing, timing, and long-term effects of antioxidant supplementation in newborns remain areas of ongoing research.⁴⁰

Antioxidant Supplementation in Neonatal Iaundice Prevention

Neonatal jaundice, a condition characterized by elevated levels of bilirubin in the blood, affects a significant percentage of newborns, particularly in the first week of life. While mild jaundice is typically harmless and resolves on its own, severe cases can lead to serious complications such as kernicterus, which can cause brain damage. Oxidative stress plays a notable role in the pathophysiology of neonatal jaundice, as excessive hemolysis and the immature antioxidant systems in

ISSN: 2394-8973 [30]

neonates result in an overload of bilirubin. Antioxidant supplementation has emerged as a promising therapeutic approach to reduce oxidative stress and prevent the escalation of neonatal jaundice. 41-42

1. The Role of Antioxidants in Bilirubin Metabolism

Antioxidants are critical in regulating the oxidative balance in neonates, particularly in the context of bilirubin metabolism. Bilirubin, a byproduct of red blood cell breakdown, has both antioxidant and pro-oxidant properties depending on its concentration. In low levels, bilirubin can act as a powerful antioxidant, scavenging free radicals and protecting cells from oxidative damage. However, when bilirubin levels are too high, as in cases of severe jaundice, it becomes toxic, particularly to the brain. Antioxidants such as vitamins C and E play crucial roles in preventing bilirubin from accumulating to toxic levels. Vitamin E, in particular, has been shown to protect red blood cells from oxidative damage and reduce hemolysis, a key contributor to elevated bilirubin levels. Supplementing with antioxidants during the neonatal period may help maintain a balanced oxidative state, reduce hemolysis, and consequently prevent excessive bilirubin production, which could mitigate the risk of jaundice.43-44

2. Vitamin E Supplementation in Neonates

One of the most studied antioxidants for the prevention of neonatal jaundice is vitamin E. As a fat-soluble antioxidant, vitamin E is particularly effective in protecting cell membranes from lipid peroxidation, a process that contributes to the breakdown of red blood cells (hemolysis) and the subsequent release of bilirubin. Research has demonstrated that preterm infants, who are at higher risk of developing severe jaundice, often have low levels of vitamin E due to the limited placental transfer of this vitamin in the final trimester of pregnancy. Vitamin E supplementation in these infants has been shown to reduce the incidence of hyperbilirubinemia (excessive bilirubin levels) and the for phototherapy. Studies suggest that administering vitamin E early in life, especially to preterm infants, can strengthen the antioxidant defense system, reduce oxidative stress, and limit the hemolytic breakdown of red blood cells, which is a major source of bilirubin. This reduction in hemolysis can prevent the excessive buildup of bilirubin in the bloodstream, thus lowering the risk of neonatal jaundice. 45-46

3. Vitamin C and Other Antioxidants in Jaundice Prevention

Vitamin C is another antioxidant that has shown potential in mitigating oxidative stress associated with neonatal jaundice. As a water-soluble vitamin, vitamin C works synergistically with vitamin E, regenerating its oxidized form to ensure continued protection against oxidative damage. By enhancing the antioxidant capacity of the neonate, vitamin C supplementation may help limit the oxidative damage that leads to increased hemolysis and elevated bilirubin levels. In addition to vitamins C and E, other antioxidants such as glutathione and selenium have also been explored for their roles in reducing oxidative stress in neonates. Glutathione, a key intracellular

antioxidant, plays a vital role in detoxifying hydrogen peroxide and protecting cells from oxidative damage. However, the levels of glutathione in preterm infants are lower compared to full-term infants, which may increase their susceptibility to oxidative stress-related conditions like jaundice. Supplementation with glutathione precursors or selenium, which is essential for the activity of glutathione peroxidase, may help bolster the neonatal antioxidant defense system and prevent bilirubin-induced oxidative stress.⁴⁷⁻⁴⁸

4. Efficacy and Safety of Antioxidant Supplementation

While antioxidant supplementation offers potential benefits in preventing neonatal jaundice, the safety and efficacy of these interventions must be carefully considered. The timing, dosage, and formulation of antioxidants are critical factors that influence their therapeutic outcomes. Excessive supplementation of antioxidants like vitamin E. for instance, could pose risks such as impaired immune function or increased susceptibility to infections. Therefore, it is important to balance the need for oxidative stress reduction with the concerns associated with antioxidant administration in neonates. Clinical trials investigating the efficacy of antioxidant supplementation in preventing neonatal jaundice have produced mixed results. Some studies report significant reductions in bilirubin levels and the need for phototherapy in infants receiving antioxidant supplementation, while others suggest limited benefits. These variations in outcomes may be attributed to differences in study design, patient populations (e.g., preterm versus full-term infants), and the specific antioxidant formulations used.⁴⁹

Clinical Implications of Antioxidant Supplementation

Antioxidant supplementation in neonates, particularly for the prevention of neonatal jaundice, offers a promising approach to mitigate the effects of oxidative stress, which plays a critical role in the development of this condition. However, translating the theoretical benefits of antioxidants into clinical practice requires careful consideration of efficacy, safety, and the broader implications for newborn health.

1. Efficacy of Antioxidant Supplementation

Clinical studies have demonstrated mixed outcomes regarding the efficacy of antioxidant supplementation in reducing the incidence and severity of neonatal jaundice. Research has shown that antioxidants such as vitamins C and E can reduce oxidative stress and hemolysis, thereby decreasing bilirubin levels. For instance, in preterm infants who are at a higher risk of developing hyperbilirubinemia due to their immature liver and antioxidant systems, early antioxidant supplementation may provide protective effects. However, while some trials have reported significant improvements, including reduced bilirubin levels and a lower need for interventions like phototherapy, others have shown only modest or negligible benefits. These discrepancies may be attributed to variations in study design, timing of administration, doses, and patient characteristics. As

ISSN: 2394-8973 [31]

such, there is still a need for large-scale randomized controlled trials (RCTs) to establish definitive conclusions about the efficacy of antioxidant supplementation in preventing neonatal jaundice.⁵⁰

2. Safety Considerations in Neonates

The safety profile of antioxidant supplementation in neonates is another critical factor. Although antioxidants are generally considered safe, high doses or prolonged use could lead to adverse effects, particularly in premature infants who have underdeveloped systems. For example, excessive vitamin E intake has been associated with an increased risk of infections and sepsis in preterm infants due to its immunomodulatory effects. Similarly, while vitamin C is water-soluble and easily excreted, high doses could potentially disrupt metabolic processes or interact with other nutrients. Given the delicate balance of oxidative and reductive processes in neonates, healthcare providers must ensure that antioxidant supplementation is administered in appropriate doses and at the right time. More importantly, clinicians should carefully monitor neonates receiving antioxidants for any potential adverse effects and adjust treatments accordingly.51

3. Tailored Antioxidant Therapy

The clinical application of antioxidants in preventing neonatal jaundice may be most effective when tailored to specific populations. For instance, preterm infants, who have immature antioxidant systems and are at greater risk of severe jaundice, may benefit the most from antioxidant interventions. However, full-term infants with adequate antioxidant defenses may not require supplementation, and unnecessary intervention could pose more risks than benefits. Additionally, the use of antioxidants might also depend on the severity of the oxidative stress burden. For neonates with high oxidative stress due to conditions such as intrauterine growth restriction (IUGR) or hemolytic disease, antioxidant therapy could be more advantageous. Tailoring antioxidant supplementation based on these risk factors could enhance efficacy while minimizing potential

4. Phototherapy and Antioxidant Supplementation

Phototherapy, the standard treatment for neonatal jaundice, works by converting bilirubin into water-soluble forms that can be excreted from the body. However, phototherapy itself can generate oxidative stress by increasing the production of reactive oxygen species (ROS). In this context, antioxidants may play a supportive role in mitigating the oxidative damage induced by phototherapy, thereby enhancing its safety and efficacy. While studies on the combined use of antioxidants and phototherapy are still limited, initial findings suggest that antioxidants could reduce the oxidative side effects of phototherapy without interfering with its therapeutic effects. This opens new avenues for combined treatment strategies in managing neonatal jaundice.⁵³

5. Long-term Effects on Neurodevelopment

One of the most severe complications of untreated jaundice is kernicterus, a form of brain damage caused by the deposition of unconjugated bilirubin in the central nervous system. Preventing neonatal jaundice through antioxidant supplementation may have long-term neurodevelopmental benefits. Reducing bilirubin levels could lower the risk of neurological damage, improving cognitive and motor outcomes later in life. While the direct long-term effects of antioxidant supplementation on neurodevelopment remain under-researched, the potential to prevent bilirubin-induced brain damage highlights the importance of further investigation into the neuroprotective role of antioxidants in neonates.⁵¹

6. Cost-Effectiveness of Antioxidant Supplementation

From a public health perspective, the cost-effectiveness of antioxidant supplementation in preventing neonatal jaundice is an important consideration. Antioxidant supplements such as vitamins C and E are relatively inexpensive and widely available, making them accessible for routine use in neonatal care, especially in resource-limited settings. If proven effective in reducing the need for more costly interventions like phototherapy or exchange transfusions, antioxidant supplementation could provide a cost-effective solution for managing neonatal jaundice. However, more robust evidence is needed to determine whether routine antioxidant supplementation offers significant cost savings or improves outcomes in the broader neonatal population. Comprehensive cost-benefit analyses will be essential for informing public health policies and clinical guidelines.⁵²

7. Integrating Antioxidant Therapy into Neonatal Care

To maximize the clinical benefits of antioxidant supplementation, it is essential to integrate it into broader neonatal care protocols. This includes screening for risk factors that predispose neonates to oxidative stress and jaundice, such as prematurity or hemolytic disease, and ensuring that antioxidant therapy is used in conjunction with established treatments phototherapy. Furthermore, healthcare providers should receive adequate training on the appropriate use of antioxidants in neonatal care, including understanding the mechanisms, dosages, and potential risks associated with these supplements. Such an integrated approach can ensure that antioxidant supplementation is utilized effectively to improve neonatal outcomes.⁵³

Conclusion

Oxidative stress plays a crucial role in the pathophysiology of neonatal jaundice, and antioxidant supplementation offers a promising avenue for reducing the incidence and severity of this condition. By targeting the reactive oxygen species (ROS) and supporting the body's natural antioxidant defense systems, supplements such as vitamins C and E may help lower bilirubin levels and prevent the need for more intensive treatments like phototherapy and exchange transfusion. However, while the potential benefits of antioxidants in neonatal care are evident, there remain significant gaps in clinical

ISSN: 2394-8973 [32]

understanding. More large-scale, randomized clinical trials are needed to determine optimal dosing, timing, and target populations to ensure both efficacy and safety in practice. Additionally, the integration of antioxidant therapies into neonatal care protocols should be approached with caution, considering the delicate balance of oxidative and reductive processes in newborns.

References

- Okamgba OC, Nwosu DC, Nwobodo EI, Agu GC, Ozims SJ, Obeagu EI, Ibanga IE, Obioma-Elemba IE, Ihekaire DE, Obasi CC, Amah HC. Iron Status of Pregnant and Post-Partum Women with Malaria Parasitaemia in Aba Abia State, Nigeria. Annals of Clinical and Laboratory Research. 2017;5(4):206.
- Agreen FC, Obeagu EI. Anaemia among pregnant women: A review of African pregnant teenagers. Journal of Public Health and Nutrition. 2023;6(1):138.
- 3. Obeagu EI, Obeagu GU. Eosinophil Dynamics in Pregnancy among Women Living with HIV: A Comprehensive Review. Int. J. Curr. Res. Med. Sci. 2024;10(1):11-24. https://doi.org/10.22270/ijmspr.v10i2.95
- Obeagu EI, Obeagu GU, Chukwueze CM, Ikpenwa JN, Ramos GF. Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri metropolis. Madonna University journal of Medicine and Health Sciences ISSN: 2814-3035. 2022 Apr 19;2(2):1-9.
- Obeagu EI, Obeagu GU. Eosinophilic Changes in Placental Tissues of HIV-Positive Pregnant Women: A Review. Elite Journal of Laboratory Medicine, 2024; 2(1): 14-32
- 6. Joo EH, Kim YR, Kim N, Jung JE, Han SH, Cho HY. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. International journal of molecular sciences. 2021;22(18):10122. https://doi.org/10.3390/ijms221810122
- Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International journal of molecular sciences. 2021;22(9):4642. https://doi.org/10.3390/ijms22094642
- 8. Feng Y, Feng Q, Qu H, Song X, Hu J, Xu X, Zhang L, Yin S. Stress adaptation is associated with insulin resistance in women with gestational diabetes mellitus. Nutrition & diabetes. 2020;10(1):4. https://doi.org/10.1038/s41387-020-0107-8
- 9. Obeagu EI, Abdirahman BF, Bunu UO, Obeagu GU. Obsterics characteristics that effect the newborn outcomes. Int. J. Adv. Res. Biol. Sci. 2023;10(3):134-43.
- 10. Anyiam AF, Obeagu EI, Obi E, Omosigho PO, Irondi EA, Arinze-Anyiam OC, Asiyah MK. ABO blood groups and gestational diabetes among pregnant women attending University of Ilorin Teaching Hospital, Kwara State, Nigeria. International Journal of Research and Reports in Hematology. 2022;5(2):113-121.
- 11. Okorie HM, Obeagu EI, Eze EN, Jeremiah ZA. Assessment of some haematological parameters in malaria infected pregnant women in Imo state Nigeria. Int. J. Curr. Res. Biol. Med. 2018;3(9):1-4.
- 12. Okorie HM, Obeagu EI, Eze EN, Jeremiah ZA. Assessment of coagulation parameters in malaria infected pregnant women in Imo state, Nigeria. International Journal of Current Research in Medical Sciences. 2018;4(9):41-9.
- Obeagu EI, Obeagu GU. Neonatal Outcomes in Children Born to Mothers with Severe Malaria, HIV, and Transfusion History: A Review. Elite Journal of Nursing and Health Science, 2024; 2(3): 38-58
- 14. Obeagu EI, Obeagu GU. The Vital Role of Antioxidants in Enhancing Fertility and Pregnancy Success: A Review. Elite Journal of Nursing and Health Science. 2023;1(1):1-2.

- Obeagu EI, Ubosi NI, Uzoma G. Antioxidant Supplementation in Pregnancy: Effects on Maternal and Infant Health. Int. J. Adv. Multidiscip. Res. 2023;10(11):60-70.
- 16. Obeagu EI, Obeagu GU. Enhancing Maternal and Fetal Well-being: The Role of Antioxidants in Pregnancy. Elite Journal of Medical Sciences. 2024;2(4):76-87.
- 17. Obeagu EI, Obeagu GU. Harnessing the Power of Antioxidant-Rich Diet for Preconception Health: A Review. Elite Journal of Health Science. 2023;1(1):1-3.
- 18. Nowak D, Gośliński M, Wojtowicz E, Przygoński K. Antioxidant properties and phenolic compounds of vitamin C-rich juices. Journal of Food Science. 2018;83(8):2237-2246. https://doi.org/10.1111/1750-3841.14284
- 19. Obeagu EI, Adias TC, Obeagu GU. Influence of Antioxidants on Maternal and Fetal Immune Response: A Review. Elite Journal of Nursing and Health Science. 2024;2(6):1-3.
- 20. Obeagu EI, Batisani K, Obeagu GU. Antioxidants and Neurodevelopmental Outcomes in Offspring: A Review of Maternal Interventions. Elite Journal of Health Science. 2023;2(5):1-9.
- 21. Obeagu EI, Batisani K, Obeagu GU. Antioxidants and Postpartum Complications: Preventions. Elite Journal of Nursing and Health Science. 2024;2(5):30-40.
- 22. Obeagu EI, Obeagu GU. Antioxidants and Gestational Diabetes Mellitus: A Comprehensive Review of Preventive Strategies. Elite Journal of Health Science. 2024;2(5):19-29.
- 23. Obeagu EI, Obeagu GU. Harnessing the Power of Antioxidants: Enhancing Gamete Quality and Fostering Successful Pregnancy. Elite Journal of Nursing and Health Science. 2024;2(3):73-83.
- 24. Obeagu EI, Muhimbura E, Obeagu GU. Hypoxia-Induced Oxidative Stress: Maternal and Fetal Implications. Elite Journal of Haematology, 2024; 2 (8)::57-72.
- 25. Obeagu EI, Obeagu GU. Managing Hypoxia in Pregnancy: Current Strategies and Future Directions. Elite Journal of Medical Sciences. 2024;2(8):53-63.
- 26. Obeagu EI, Obeagu GU. Hypoxia-induced Metabolic Changes in Pregnancy: Clinical Perspectives. Elite Journal of Medicine. 2024;2(8):50-9.
- 27. Obeagu EI, Chukwu PH. Maternal Well-being in the Face of Hypoxia during Pregnancy: A Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(7):25-38.
- 28. Dhakar RC, Prajapati SK, Maurya SD, Tilak VK, Das MK, Das S, Verma KK, Jain N, Antioxidant Potential of Cordia dichotoma: A Review, Asian Journal of Dental and Health Sciences. 2021;1(1):19-23https://doi.org/10.22270/ajdhs.v1i1.6
- 29. Obeagu EI, Obeagu GU. Oxygen Deprivation in Pregnancy: Understanding Hypoxia's Impact on Maternal Health. Journal home page: http://www.journalijiar.com.;12(01).
- 30. Obeagu EI, Obeagu GU. Hypoxia-Induced Inflammation: Implications for Maternal Health. Elite Journal of Scientific Research and Review. 2024;2(6):8-25.
- 31. Obeagu EI, Obeagu GU. Hypoxia in Pregnancy: Implications for Fetal Development. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(7):39-50.
- 32. Obeagu EI, Obeagu GU. Hypoxia and Pregnancy: The Role of Genetics and Epigenetics. Elite Journal of Medical Sciences. 2024;2(8):24-36.
- 33. Carter AM. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiological reviews. 2012;92(4):1543-1576. https://doi.org/10.1152/physrev.00040.2011
- 34. Obeagu EI, Obeagu GU. Maternal Hypoxia: Impact on Immune System Development in Offspring. Elite Journal of Health Science. 2024;2(8):45-57.

ISSN: 2394-8973 [33]

- 35. Obeagu EI, Obeagu GU. Maternal Hypoxia and Placental Dysfunction: Insights from Molecular Biology. Elite Journal of Health Science. 2024;2(8):58-69.
- Kalagiri RR, Carder T, Choudhury S, Vora N, Ballard AR, Govande V, Drever N, Beeram MR, Uddin MN. Inflammation in complicated pregnancy and its outcome. American journal of perinatology. 2016;33(14):1337-1356. https://doi.org/10.1055/s-0036-1582397
- 37. Al-Gubory KH. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reproductive biomedicine online. 2014;29(1):17-31. https://doi.org/10.1016/j.rbmo.2014.03.002
- Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. The Journal of endocrinology. 2017;232(1):R27. https://doi.org/10.1530/JOE-16-0340
- 39. Burton GJ, Cindrova-Davies T, wa Yung H, Jauniaux E. Hypoxia and reproductive health: Oxygen and development of the human placenta. Reproduction. 2021;161(1):F53-65. https://doi.org/10.1530/REP-20-0153
- 40. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry. 2017;44(2):532-553. https://doi.org/10.1159/000485089
- 41. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine. 2018;54(4):287-293. https://doi.org/10.1016/j.ajme.2017.09.001
- 42. Roy Z, Bansal R, Siddiqui L, Chaudhary N. Understanding the role of free radicals and antioxidant enzymes in human diseases. Current Pharmaceutical Biotechnology. 2023;24(10):1265-1276. https://doi.org/10.2174/1389201024666221121160822
- 43. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Advances in medical sciences. 2018;63(1):68-78. https://doi.org/10.1016/j.advms.2017.05.005
- 44. Sebastiani G, Navarro-Tapia E, Almeida-Toledano L, Serra-Delgado M, Paltrinieri AL, García-Algar Ó, Andreu-Fernández V. Effects of antioxidant intake on fetal development and maternal/neonatal health during pregnancy. Antioxidants. 2022;11(4):648. https://doi.org/10.3390/antiox11040648

- 45. Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS. Vitamins C and E and the risks of preeclampsia and perinatal complications. New England Journal of Medicine. 2006;354(17):1796-1806. https://doi.org/10.1056/NEJMoa054186
- 46. Cederberg J, Simán CM, Eriksson UJ. Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatric research. 2001;49(6):755-762. https://doi.org/10.1203/00006450-200106000-00007
- 47. Perkins AV. Placental oxidative stress, selenium and preeclampsia. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health. 2011;1(1):95-99. https://doi.org/10.1016/j.preghy.2010.10.008
- 48. Rayman MP, Searle E, Kelly L, Johnsen S, Bodman-Smith K, Bath SC, Mao J, Redman CW. Effect of selenium on markers of risk of preeclampsia in UK pregnant women: a randomised, controlled pilot trial. British Journal of Nutrition. 2014;112(1):99-111. https://doi.org/10.1017/S0007114514000531
- 49. Luo J, Wu W, Zhang P, Chen X, Feng Y, Ma N, Yang H, Wang Y, Li M, Xie B, Guo P. Zinc levels and birth weight in pregnant women with gestational diabetes mellitus: a matched cohort study in China. The Journal of Clinical Endocrinology & Metabolism. 2020;105(7): e2337-2345. https://doi.org/10.1210/clinem/dgaa171
- 50. Sley EG, Rosen EM, van 't Erve TJ, Sathyanarayana S, Barrett ES, Nguyen RH, Bush NR, Milne GL, Swan SH, Ferguson KK. Omega-3 fatty acid supplement use and oxidative stress levels in pregnancy. PloS one. 2020;15(10): e0240244. https://doi.org/10.1371/journal.pone.0240244
- 51. Orhan H, Önderoglu L, Yücel A, Sahin G. Circulating biomarkers of oxidative stress in complicated pregnancies. Archives of gynecology and obstetrics. 2003; 267:189-195. https://doi.org/10.1007/s00404-002-0319-2
- 52. Barbosa ML, de Meneses AA, de Aguiar RP, e Sousa JM, Cavalcante AA, Maluf SW. Oxidative stress, antioxidant defense and depressive disorders: a systematic review of biochemical and molecular markers. Neurology, Psychiatry and Brain Research. 2020; 36:65-72. https://doi.org/10.1016/j.npbr.2020.02.006
- 53. Di Fabrizio C, Giorgione V, Khalil A, Murdoch CE. Antioxidants in pregnancy: do we really need more trials? Antioxidants. 2022 Apr 22;11(5):812. https://doi.org/10.3390/antiox11050812

ISSN: 2394-8973 [34]