Emmanuel Ifeanyi Obeagu International Journal of Medical Sciences and Pharma Research. 2024;10(2):60-64

Available online on 15.07.2024 at ijmspr.com etEATONALoURAL OF

International Journal of Medical Sciences and

| Pharma Research
Check for ‘ Open Access to Medical Science and Pharma Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which
Updates permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author

and source are credited

Open Access Review Article

Endoplasmic Reticulum Stress and Vaso-Occlusive Crisis in Sickle Cell
Anemia: A Review

Emmanuel Ifeanyi Obeagu *

Department of Medical Laboratory Science, Kampala International University, Uganda

Article Info: Abstract

Article History: Sickle cell anemia (SCA) is a genetic disorder characterized by the production of abnormal

Received 11 April 2024 hemoglobin, specifically hemoglobin S (HbS), which leads to the sickling of red blood cells (RBCs) and
Reviewed 03 June 2024 subsequent microvascular occlusion. Vaso-occlusive crises (VOCs) are a hallmark of SCA, resulting in
Accepted 24 June 2024 acute pain and potential organ damage. Recent studies have highlighted the role of endoplasmic
Published 15 July 2024 reticulum (ER) stress in the pathophysiology of SCA, as it contributes to the accumulation of

misfolded proteins and activates the unfolded protein response (UPR). This response, while initially
*Address for Correspondence: adaptive, can become detrimental when prolonged, leading to cellular dysfunction and exacerbating

the sickling process. The relationship between ER stress and VOCs involves several interconnected

Emmanuel Ifeanyi Obeagu, Department of Medical  mechanisms, including the activation of pro-inflammatory cytokines, apoptosis of erythroid

Bi?g;?stﬁ;yuggf:;:ce‘ Kampala  International precursor cells, and oxidative stress. ER stress-induced inflammation promotes the adhesion of

’ ' sickled RBCs and leukocytes to the endothelium, enhancing microvascular obstruction. Additionally,

Cite this article as: the effects of ER stress on erythropoiesis can lead to anemia and further hypoxia, creating a vicious

cycle that perpetuates the risk of VOCs. Understanding these mechanisms provides critical insights

Obeagu EI, Endoplasmic Reticulum Stress and  jnto the complexities of SCA and the factors that contribute to the frequency and severity of VOCs.

Vaso-Occlusive Crisis in Sickle Cell Anemia: A mo.o0ting ER stress pathways presents a novel therapeutic strategy to improve clinical outcomes in
Review, International Journal of Medical Sciences ; . . .

patients with SCA. Pharmacological agents that alleviate ER stress or modulate the UPR may enhance

& Pharma Research, 2024; 10(2):60-64 i 5
DO http://dx.doi.org/10.22270/ijmsprv10i2.105 ~ RBC function and reduce the incidence of VOCs.

Keywords: Sickle cell anemia, vaso-occlusive crisis, endoplasmic reticulum stress, red blood cells,
hemoglobin, inflammation, therapeutic strategies

Introduction induce the production of pro-inflammatory cytokines, such as
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a),
Sickle cell anemia (SCA) is an autosomal recessive genetic further contributing to the inflammatory milieu that
disorder caused by a mutation in the B-globin gene, leading to characterizes VOCs.1-10
the production of abnormal hemoglobin known as hemoglobin
S (HbS). This mutation results in the polymerization of HbS Moreover, ER stress influences erythropoiesis, the process of
under low oxygen conditions, causing red blood cells (RBCs) to producing RBCs, by promoting the apoptosis of erythroid
assume a rigid, sickle shape. The distortion of RBCs not only progenitor cells. This leads to ineffective erythropoiesis and
impairs their ability to transport oxygen effectively but also anemia, which can exacerbate hypoxia and promote the sickling
predisposes them to hemolysis and vaso-occlusive crises of RBCs. The interplay between anemia, hypoxia, and sickling
(VOCs). VOCs are characterized by the occlusion of small blood creates a vicious cycle that increases the risk of VOCs. In
vessels, leading to acute pain, tissue ischemia, and potential addition, the accumulation of reactive oxygen species (ROS)
organ damage. The management of SCA has advanced during ER stress contributes to oxidative damage in RBCs,
significantly, but VOCs remain a major clinical challenge. Recent further ~destabilizing their membranes and promoting
research has increasingly focused on the role of endoplasmic hemolysis. The recognition of ER stress as a significant
reticulum (ER) stress in the pathophysiology of SCA. The ER is contributor to the pathophysiology of SCA has opened new
an essential organelle involved in the synthesis, folding, and avenues for therapeutic interventions. Pharmacological agents
modification of proteins. Disruptions in ER function can lead to that alleviate ER stress or modulate the UPR are being explored
the accumulation of misfolded or unfolded proteins, triggering as potential treatments to improve RBC function and reduce the
an adaptive response known as the unfolded protein response incidence of VOCs. Furthermore, gene therapy approaches
(UPR). While the UPR aims to restore ER homeostasis, aimed at increasing fetal hemoglobin (HbF) levels have shown
prolonged or unresolved ER stress can result in cellular promise in mitigating the effects of HbS polymerization, which
dysfunction and apoptosis. In the context of SCA, the abnormal may subsequently decrease the burden of ER stress in affected
folding of HbS may contribute to ER stress in erythroid individuals.11-15

precursor cells, further complicating the disease's clinical
presentation. ER stress has been linked to various pathological .
mechanisms in SCA, including inflammation, oxidative stress, Anemia
and apoptosis. The inflammatory response associated with ER
stress can exacerbate the complications of SCA by promoting
endothelial activation and enhancing the adhesion of sickled
RBCs to the vascular endothelium. Additionally, ER stress can
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Endoplasmic reticulum (ER) stress plays a critical role in the
pathophysiology of sickle cell anemia (SCA), a genetic disorder
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specifically hemoglobin S (HbS). The ER is responsible for the
synthesis, folding, and post-translational modification of
proteins, including globin chains. In SCA, the presence of HbS
leads to the misfolding of globin chains, resulting in the
accumulation of abnormal hemoglobin within erythroid
precursor cells. This accumulation triggers ER stress, which has
significant implications for the cellular and systemic
manifestations of the disease. ER stress is primarily induced
when the load of misfolded or unfolded proteins exceeds the
capacity of the ER's protein folding machinery. In SCA, the
polymerization of HbS under low oxygen tension results in the
formation of rigid, sickled RBCs that can disrupt normal
erythropoiesis. The accumulation of misfolded HbS activates
the UPR, a cellular response designed to restore ER
homeostasis. The UPR is mediated by three key signaling
pathways: inositol-requiring enzyme 1 (IRE1), protein kinase
RNA-like ER kinase (PERK), and activating transcription factor
6 (ATF6). Activation of IRE1 leads to the splicing of X-box
binding protein 1 (XBP1), which promotes the expression of
chaperone proteins that assist in the proper folding of proteins.
PERK activation phosphorylates the eukaryotic translation
initiation factor 2a (elF2a), reducing global protein synthesis to
alleviate the protein load on the ER. Meanwhile, ATF6
translocates to the Golgi apparatus, where it is processed to
activate the transcription of UPR target genes. While these
responses initially aim to restore ER function, prolonged or
unresolved ER stress can lead to detrimental outcomes,
including cell death.16-25

In the context of SCA, ER stress has profound implications for
erythropoiesis, the process of red blood cell production. ER
stress-induced apoptosis of erythroid progenitor cells can lead
to ineffective erythropoiesis, contributing to anemia. This
reduction in functional RBCs exacerbates the hypoxic
environment, promoting further sickling of existing RBCs. The
cycle of sickling, hemolysis, and ineffective erythropoiesis
creates a vicious feedback loop that amplifies the severity of
SCA and increases the frequency of vaso-occlusive crises.
Additionally, the activation of ER stress pathways has been
linked to the production of reactive oxygen species (ROS). The
increased oxidative stress resulting from ER dysfunction can
lead to further damage to RBC membranes, enhancing
hemolysis and increasing the release of free hemoglobin into
circulation. Free hemoglobin can scavenge nitric oxide (NO),
leading to vasoconstriction and promoting the pathogenesis of
VOCs by exacerbating endothelial dysfunction. ER stress is also
closely linked to the inflammatory response observed in SCA.
The activation of ER stress pathways can lead to the
upregulation of pro-inflammatory cytokines, such as
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a).
These cytokines can promote endothelial activation, increasing
the expression of adhesion molecules that facilitate the binding
of sickled RBCs and leukocytes to the vascular endothelium.
This adhesion is a critical step in the pathogenesis of VOCs,
leading to microvascular obstruction, tissue ischemia, and the
characteristic pain crises associated with SCA. Furthermore, ER
stress-induced inflammation can perpetuate the cycle of
sickling and vaso-occlusion. The inflammatory milieu can
exacerbate the sickling process by promoting endothelial
dysfunction, increasing blood viscosity, and inducing a pro-
coagulant state. The interplay between ER stress, inflammation,
and vaso-occlusive phenomena underscores the complexity of
SCA and highlights the need for integrated therapeutic
strategies.26-35

Mechanisms Linking ER Stress to Vaso-Occlusive
Crises
The link between endoplasmic reticulum (ER) stress and vaso-

occlusive crises (VOCs) in sickle cell anemia (SCA) is
multifaceted and involves several interrelated mechanisms.
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These mechanisms encompass inflammation, oxidative stress,
erythropoiesis, and cellular apoptosis, each contributing to the
exacerbation of the sickling process and the occurrence of VOCs.

1. Activation of Inflammatory Pathways

ER stress triggers the unfolded protein response (UPR), which
activates various signaling pathways that can lead to
inflammation. In SCA, the accumulation of misfolded
hemoglobin, particularly HbS, can induce the expression of pro-
inflammatory cytokines such as interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-a), and C-reactive protein (CRP).
This inflammatory response enhances endothelial activation,
resulting in the upregulation of adhesion molecules such as
vascular cell adhesion molecule-1 (VCAM-1) and intercellular
adhesion molecule-1 (ICAM-1). The increased expression of
these adhesion molecules facilitates the binding of sickled RBCs
and leukocytes to the vascular endothelium. This adhesion
contributes to microvascular obstruction, which is a critical
event in the development of VOCs. The inflammatory milieu can
also lead to further activation of the coagulation cascade,
creating a pro-coagulant state that exacerbates the risk of vaso-
occlusion.36-38

2. Induction of Apoptosis in Erythroid Cells

ER stress can lead to programmed cell death (apoptosis) in
erythroid progenitor cells, particularly in the bone marrow. In
SCA, the misfolding of hemoglobin during erythropoiesis can
overwhelm the ER's protein folding capacity, triggering
apoptosis via UPR pathways. The activation of key mediators,
such as CCAAT/enhancer-binding protein homologous protein
(CHOP), promotes apoptotic signaling. The apoptosis of
erythroid precursor cells results in ineffective erythropoiesis,
leading to decreased production of functional RBCs and
exacerbating anemia. Anemia contributes to a hypoxic
environment, further increasing the likelihood of sickling and
subsequent vaso-occlusion. This cycle of anemia, hypoxia, and
sickling creates a feedback loop that increases the frequency
and severity of VOCs.39-40

3. Increased Oxidative Stress

ER stress is associated with increased production of reactive
oxygen species (ROS), which can have deleterious effects on
cellular function. The accumulation of misfolded proteins and
the activation of the UPR can lead to mitochondrial dysfunction,
contributing to the generation of ROS. In the context of SCA,
oxidative stress has significant implications for RBC integrity
and function. Increased ROS levels can lead to oxidative damage
to the RBC membrane, resulting in hemolysis and the release of
free hemoglobin into circulation. Free hemoglobin scavenges
nitric oxide (NO), leading to vasoconstriction and impaired
endothelial function. The combination of oxidative stress and
endothelial dysfunction exacerbates the risk of microvascular
obstruction, thereby promoting VOCs.41-43

4. Altered Blood Rheology

ER stress and the associated inflammatory response can alter
blood rheology, contributing to the occurrence of VOCs. In SCA,
the sickling of RBCs leads to changes in blood viscosity and flow
properties. The inflammatory cytokines released during ER
stress can further increase blood viscosity by promoting the
activation of coagulation factors and the aggregation of RBCs.
Additionally, the interaction between sickled RBCs and
activated endothelium can lead to the formation of
microthrombi, exacerbating the occlusion of small blood
vessels. This alteration in blood rheology can create a
detrimental cycle, as increased viscosity and impaired blood

flow contribute to tissue hypoxia and further sickling of RBCs.44-
45
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5. Impairment of Nitric Oxide Signaling

Nitric oxide (NO) is a crucial vasodilator that plays a key role in
maintaining vascular homeostasis. In SCA, ER stress-induced
inflammation and oxidative stress can impair NO signaling. The
scavenging of NO by free hemoglobin, as well as the endothelial
dysfunction induced by inflammatory mediators, leads to
reduced bioavailability of NO. The decreased availability of NO
exacerbates vasoconstriction and contributes to the
dysregulation of vascular tone, increasing the risk of vaso-
occlusion. Furthermore, impaired NO signaling can lead to a
state of chronic inflammation, perpetuating the cycle of ER
stress and its associated pathologies in SCA.46-47

Implications for Therapeutic Strategies

The intricate relationship between endoplasmic reticulum (ER)
stress and vaso-occlusive crises (VOCs) in sickle cell anemia
(SCA) presents several opportunities for the development of
targeted therapeutic strategies. Understanding the mechanisms
by which ER stress influences the pathophysiology of SCA can
inform the design of interventions aimed at alleviating the
detrimental effects of ER stress, improving red blood cell (RBC)
function, and reducing the frequency and severity of VOCs.
Pharmacological agents that modulate the UPR offer a
promising approach to alleviate ER stress in SCA. Compounds
that enhance the protein folding capacity of the ER, such as
chemical chaperones (e.g., tauroursodeoxycholic acid), may
help mitigate the accumulation of misfolded HbS and restore ER
homeostasis. By promoting the proper folding of globin chains,
these agents can reduce the burden of ER stress, thereby
improving erythropoiesis and decreasing the risk of VOCs.
Additionally, agents that selectively activate the protective
branches of the UPR can provide a cytoprotective effect. For
instance, targeting the IRE1 pathway to enhance X-box binding
protein 1 (XBP1) splicing could increase the expression of
chaperone proteins, helping to restore ER function. Such
strategies may be beneficial in reducing the apoptotic signaling
associated with prolonged ER stress and improving the overall
survival of erythroid progenitor cells. Given the role of ER stress
in promoting inflammation and endothelial activation in SCA,
anti-inflammatory therapies may offer a viable strategy to
mitigate the impact of VOCs. Corticosteroids and non-steroidal
anti-inflammatory drugs (NSAIDs) can reduce the production of
pro-inflammatory cytokines and attenuate the inflammatory
response associated with ER stress. By decreasing endothelial
activation and improving vascular health, these agents may help
reduce the frequency of VOCs. Novel anti-inflammatory agents,
such as biologics targeting specific cytokines (e.g., IL-6 or TNF-
a), could further enhance therapeutic efficacy by directly
addressing the inflammatory milieu that exacerbates vaso-
occlusion. Such targeted therapies may also help prevent the
long-term complications associated with chronic inflammation
in SCA.48-56

Antioxidant therapies aimed at reducing oxidative stress can
also play a significant role in alleviating the consequences of ER
stress in SCA. Compounds such as N-acetylcysteine (NAC) and
glutathione precursors can enhance the antioxidant capacity of
cells, reducing the levels of reactive oxygen species (ROS)
generated during ER stress. By mitigating oxidative damage to
RBC membranes and endothelial cells, these antioxidants may
help preserve RBC integrity and function, thereby reducing
hemolysis and promoting better oxygen delivery. Furthermore,
antioxidants can enhance the bioavailability of nitric oxide (NO)
by preventing its scavenging by free hemoglobin. Improved NO
signaling can promote vasodilation and help restore normal
vascular tone, decreasing the risk of vaso-occlusion and
improving overall blood flow. Gene therapy represents a
transformative strategy for addressing the underlying genetic
defect responsible for SCA. Techniques such as gene editing
(e.g., CRISPR/Cas9) and gene transfer can be employed to
ISSN: 2394-8973
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correct the mutation in the f-globin gene or to promote the
expression of fetal hemoglobin (HbF), which inhibits HbS
polymerization. Increasing HbF levels can significantly reduce
the polymerization of HbS, thereby alleviating the ER stress
associated with the production of misfolded hemoglobin. By
reducing the burden of HbS in the circulation, gene therapy may
also decrease the frequency of hemolysis and its associated
oxidative stress, thereby improving the overall clinical course of
SCA. Early clinical trials using gene therapy approaches have
shown promising results, highlighting the potential for these
strategies to revolutionize the management of SCA. Given the
multifactorial nature of SCA and the interplay between ER
stress, inflammation, and oxidative stress, combination
therapies may offer a comprehensive approach to managing the
disease. Utilizing agents that target multiple pathways
simultaneously can provide synergistic benefits, enhancing
treatment efficacy and improving patient outcomes. For
example, combining anti-inflammatory agents with
antioxidants may effectively address both the inflammatory
response and oxidative stress associated with ER dysfunction.
Additionally, integrating pharmacological interventions with
gene therapy may further enhance the therapeutic impact,
providing both immediate relief from VOCs and long-term
correction of the underlying genetic defect. Such multi-faceted
approaches will require careful consideration of drug
interactions and patient-specific factors to optimize treatment
regimens.57-61

Conclusion

Endoplasmic reticulum (ER) stress plays a critical role in the
pathophysiology of sickle cell anemia (SCA), significantly
contributing to the occurrence and severity of vaso-occlusive
crises (VOCs). The mechanisms linking ER stress to VOCs
involve a complex interplay of inflammatory responses,
oxidative stress, apoptosis, and altered blood rheology, all of
which exacerbate the clinical manifestations of SCA. Emerging
research highlights the potential for innovative interventions
that can modulate ER stress and its associated pathways.
Therapeutic approaches, including the use of pharmacological
agents that enhance the unfolded protein response, anti-
inflammatory therapies, antioxidants, and gene therapy
techniques, offer promising avenues for improving patient
outcomes. Additionally, combination therapies that integrate
multiple strategies may provide synergistic benefits, effectively
addressing the multifactorial nature of SCA.
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