

Influence of Hemoglobin Variants on Vaso-Occlusive Phenomena in Sickle Cell Anemia: A Review

Emmanuel Ifeanyi Obeagu *

Department of Medical Laboratory Science, Kampala International University, Uganda

Article Info:

Article History:

Received 27 April 2024

Reviewed 07 June 2024

Accepted 24 June 2024

Published 15 July 2024

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Medical Laboratory Science, Kampala International University, Uganda.

Cite this article as:

Obeagu EI, Influence of Hemoglobin Variants on Vaso-Occlusive Phenomena in Sickle Cell Anemia: A Review, International Journal of Medical Sciences & Pharma Research, 2024; 10(2):54-59
DOI: <http://dx.doi.org/10.22270/ijmspr.v10i2.104>

Abstract

Sickle cell anemia (SCA) is a genetic disorder characterized by the presence of abnormal hemoglobin S (HbS), leading to the sickling of red blood cells (RBCs) and subsequent vaso-occlusive crises (VOCs). These crises are responsible for acute pain episodes and potential organ damage, significantly affecting the quality of life for individuals with SCA. The clinical presentation of SCA can be modified by various hemoglobin variants, including hemoglobin C (HbC) and hemoglobin E (HbE), which influence the severity and frequency of VOCs through alterations in red blood cell morphology, oxygen affinity, and inflammatory responses. The presence of hemoglobin variants can affect red blood cell rigidity and aggregation, leading to enhanced vascular occlusion and increased susceptibility to VOCs. Hemoglobin C, for instance, results in more rigid RBCs that readily adhere to the endothelium, while hemoglobin E may reduce the degree of sickling due to its higher oxygen affinity. Furthermore, these variants can modulate the inflammatory response, influencing the recruitment of leukocytes and the activation of endothelial cells, thereby contributing to the overall pathophysiology of VOCs in SCA. Individualized treatment approaches, such as hydroxyurea therapy and emerging gene therapies, can be tailored based on the specific hemoglobin variant present in the patient. Continued research is crucial to elucidate the complex interactions between hemoglobin variants and VOCs, ultimately leading to improved patient outcomes and enhanced quality of life for those affected by sickle cell anemia.

Keywords: Sickle cell anemia, hemoglobin variants, vaso-occlusive crises, hemoglobin S, hemoglobin C, hemoglobin E, vascular occlusion, inflammation, red blood cells, therapeutic strategies

Introduction

Sickle cell anemia (SCA) is a hereditary blood disorder characterized by the production of abnormal hemoglobin S (HbS), resulting from a single nucleotide mutation in the β -globin gene. This genetic alteration leads to the polymerization of deoxygenated HbS, causing red blood cells (RBCs) to deform into a rigid, sickle shape. The sickling of RBCs is the primary pathological mechanism underlying the vaso-occlusive crises (VOCs) that define the clinical course of SCA. VOCs are acute episodes of pain caused by the obstruction of blood flow in small vessels, leading to tissue ischemia, organ dysfunction, and significant morbidity. The clinical presentation of SCA is highly variable, with some patients experiencing frequent and severe VOCs, while others have milder manifestations. The severity and frequency of VOCs in SCA can be influenced by several factors, including genetic background, environmental triggers, and the presence of different hemoglobin variants. Hemoglobin variants such as hemoglobin C (HbC) and hemoglobin E (HbE) can co-inherit with HbS, altering the disease phenotype and modifying the clinical course of SCA. Understanding the impact of these hemoglobin variants on the pathophysiology of VOCs is crucial for optimizing management strategies and improving patient outcomes. Hemoglobin C results from a mutation in the β -globin gene, leading to the production of a variant hemoglobin that can affect the properties of red blood cells. Individuals with HbC may present with a milder form of sickle cell disease, often referred to as HbSC disease, which can lead to distinct clinical manifestations compared to those with homozygous HbS (HbSS). HbC causes RBCs to have increased rigidity and a tendency to aggregate, which can further

compromise blood flow and contribute to the risk of vaso-occlusion. The clinical implications of HbC co-inheritance with HbS necessitate a deeper understanding of how this variant influences the pathophysiology of SCA.¹⁻¹⁰

Hemoglobin E, on the other hand, is the most prevalent hemoglobin variant in Southeast Asia and results from a different mutation in the β -globin gene. Patients with HbE can also exhibit altered RBC properties that affect the severity of SCA. The interaction between HbE and HbS can modulate the sickling process, potentially resulting in a milder clinical course compared to patients with HbSS disease. Understanding the specific contributions of HbE to the clinical phenotype of SCA is essential for developing effective management strategies. In addition to altering red blood cell morphology, hemoglobin variants can also impact the biochemical properties of hemoglobin, particularly its affinity for oxygen. Variants like HbC and HbE can alter oxygen binding and release, affecting the conditions under which sickling occurs. For example, HbC generally exhibits lower oxygen affinity than normal hemoglobin, which may increase the likelihood of RBC sickling in hypoxic conditions. Conversely, HbE tends to have higher oxygen affinity, which may reduce the propensity for sickling. These differences underscore the importance of considering hemoglobin variants when evaluating the risk of VOCs and tailoring treatment strategies. The inflammatory response is another critical factor influencing the occurrence of VOCs in SCA. The presence of different hemoglobin variants can modulate the inflammatory processes associated with sickle cell disease. Inflammation plays a pivotal role in the activation of endothelial cells, the recruitment of leukocytes, and the

formation of thrombi, all of which contribute to vaso-occlusion. Patients with HbSC disease, for instance, often experience more pronounced inflammatory responses compared to those with HbSS disease, leading to increased complications during VOCs.¹¹⁻¹⁵

Influence of Hemoglobin Variants on Red Blood Cell Morphology

Red blood cell (RBC) morphology plays a crucial role in the pathophysiology of sickle cell anemia (SCA) and is significantly influenced by the presence of different hemoglobin variants. Hemoglobin S (HbS), the abnormal hemoglobin associated with SCA, undergoes polymerization under low oxygen conditions, leading to the characteristic sickle shape of RBCs. This deformation impairs microcirculatory flow and promotes vaso-occlusive crises (VOCs). The presence of other hemoglobin variants, such as hemoglobin C (HbC) and hemoglobin E (HbE), can modify the morphology of RBCs and influence the severity and frequency of VOCs in affected individuals. Hemoglobin C is an abnormal variant resulting from a single amino acid substitution in the β -globin chain, leading to the production of HbC instead of HbA. RBCs that contain HbC exhibit distinct morphological changes compared to those with HbS alone. Specifically, HbC causes an increase in the rigidity of RBCs, leading to a more pronounced tendency for the cells to become deformed and aggregate. The rigid nature of HbC-containing RBCs contributes to reduced deformability, which can impede blood flow in the microcirculation. In individuals with HbSC disease, the presence of both HbS and HbC can result in a unique set of morphological characteristics, potentially exacerbating the risk of vaso-occlusion during crises. Hemoglobin E is another common variant, particularly prevalent in Southeast Asia, resulting from a different mutation in the β -globin gene. The presence of HbE in individuals with SCA can influence RBC morphology in several ways. Compared to HbS alone, RBCs with HbE may exhibit altered shapes and sizes, which can impact their mechanical properties. Studies suggest that HbE may reduce the degree of sickling, as it tends to have a higher oxygen affinity than HbA, resulting in a less favorable environment for the polymerization of HbS. Consequently, individuals with HbE may experience milder symptoms and a lower frequency of VOCs compared to those with homozygous HbSS disease.¹⁶⁻²⁵

The interactions between HbS, HbC, and HbE significantly impact the likelihood of vaso-occlusion in individuals with SCA. In patients with HbSC disease, the combination of HbS and HbC leads to a different set of rheological properties compared to those with HbSS. The presence of HbC can exacerbate the sickling phenomenon and increase RBC aggregation, enhancing the risk of occlusion in small vessels. Additionally, the altered RBC morphology in HbC and HbE carriers can influence the dynamics of blood flow, including viscosity and shear stress, further contributing to the pathophysiology of VOCs. Hemoglobin variants can also affect the integrity and stability of the RBC membrane. Abnormal hemoglobins may lead to oxidative stress, resulting in lipid peroxidation and damage to the cell membrane. This damage can affect the shape and deformability of RBCs, exacerbating the sickling process and increasing the risk of vaso-occlusion. The stability of the RBC membrane is crucial for maintaining normal cell function and preventing hemolysis, which can further complicate the clinical picture in individuals with SCA. The influence of hemoglobin variants on RBC morphology has significant implications for clinical outcomes in SCA. Variants such as HbC and HbE can alter the severity and frequency of VOCs, necessitating tailored management strategies for affected individuals. Understanding the specific morphological changes associated with these hemoglobin variants is essential for predicting complications and optimizing treatment approaches. For instance, patients with HbSC disease may require different pain management and

hydration strategies compared to those with HbSS disease due to their distinct clinical presentations.²⁶⁻³⁰

Biochemical Interactions between Hemoglobin Variants and Oxygen Affinity

The oxygen-binding properties of hemoglobin are pivotal in determining the physiological responses of red blood cells (RBCs) in sickle cell anemia (SCA). The presence of different hemoglobin variants, such as hemoglobin C (HbC) and hemoglobin E (HbE), significantly influences the affinity of hemoglobin for oxygen, ultimately affecting the polymerization of hemoglobin S (HbS) and the propensity for vaso-occlusive crises (VOCs). Understanding these biochemical interactions is essential for elucidating the pathophysiology of SCA and developing tailored therapeutic strategies. Hemoglobin variants exhibit distinct oxygen-binding characteristics due to variations in their molecular structure. Hemoglobin S, the primary abnormal hemoglobin in SCA, has a lower affinity for oxygen compared to normal hemoglobin A (HbA). This lower affinity facilitates the release of oxygen to tissues but also predisposes HbS to polymerization when deoxygenated, leading to sickling of RBCs. In contrast, hemoglobin C has a lower oxygen affinity than HbA but higher than HbS, which may alter the sickling tendency in individuals with HbSC disease. The presence of HbC in sickle cell disease patients can lead to a complex interplay between oxygen affinity and polymerization dynamics, impacting the severity of the clinical phenotype. Hemoglobin E, arising from a mutation in the β -globin gene, exhibits a higher oxygen affinity than both HbA and HbS. This increased affinity can mitigate the polymerization of HbS under hypoxic conditions, potentially reducing the likelihood of sickling and VOCs in patients with HbE/SCA. The presence of HbE in individuals with SCA may also influence their overall oxygen delivery and utilization in tissues, which can affect their clinical presentation. The higher oxygen affinity of HbE can alter the oxygen saturation levels in the blood, leading to changes in the physiological responses of RBCs and their interactions with the vascular endothelium.³¹⁻⁴⁰

The differences in oxygen affinity among hemoglobin variants are primarily attributed to structural changes in the hemoglobin molecule. These structural variations affect the stability of the hemoglobin tetramer and its ability to undergo conformational changes during the oxygen-binding and release process. For example, the presence of HbC leads to altered interactions between globin chains, influencing the allosteric regulation of oxygen binding. Similarly, the presence of HbE modifies the molecular interactions within the hemoglobin molecule, impacting the cooperative binding of oxygen. These biochemical mechanisms are critical in understanding how hemoglobin variants can influence the sickling process and the clinical severity of SCA. The interactions between hemoglobin variants and oxygen affinity have significant implications for the occurrence and severity of vaso-occlusive crises in SCA. In individuals with HbSC disease, the balance between HbS and HbC can lead to unique oxygen saturation profiles and varying degrees of sickling. For instance, lower oxygen levels may promote polymerization of HbS, increasing the likelihood of VOCs. Conversely, the presence of HbC may mitigate some of the sickling effects by reducing the overall polymerization potential in hypoxic conditions. In patients with HbE, the higher oxygen affinity may provide a protective effect against VOCs, contributing to a milder clinical course compared to those with HbSS disease.⁴¹⁻⁴⁵

The Role of Inflammation in Vaso-Occlusive Crises

Vaso-occlusive crises (VOCs) are hallmark features of sickle cell anemia (SCA), characterized by acute episodes of pain and

potential tissue ischemia resulting from the obstruction of blood flow in small vessels. While the sickling of red blood cells (RBCs) is the primary driver of VOCs, inflammation plays a crucial role in exacerbating these episodes and contributing to the overall pathophysiology of the disease. Inflammation in SCA is driven by several factors, including the release of inflammatory cytokines, activation of endothelial cells, and the recruitment of leukocytes. Under hypoxic conditions, sickled RBCs can activate the endothelium, leading to the expression of adhesion molecules such as selectins and integrins. These molecules facilitate the binding of leukocytes to the endothelium, promoting their infiltration into tissues and exacerbating the inflammatory response. The increased presence of inflammatory cells, such as neutrophils and monocytes, can further aggravate vascular obstruction and tissue damage, creating a vicious cycle that perpetuates VOCs. Cytokines play a pivotal role in mediating inflammation in SCA. Pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF- α), interleukin-1 beta (IL-1 β), and interleukin-6 (IL-6), are often elevated in individuals with SCA and are associated with increased pain severity and frequency of VOCs. These cytokines can activate endothelial cells, promoting a pro-inflammatory state that enhances vascular permeability and encourages leukocyte adhesion. Additionally, the release of reactive oxygen species (ROS) during inflammation can lead to oxidative stress, further damaging the endothelium and contributing to vascular dysfunction. The interaction between sickled RBCs, leukocytes, and the endothelium is mediated by adhesion molecules, which play a crucial role in the pathogenesis of VOCs. The binding of sickled RBCs to the endothelium, facilitated by adhesion molecules such as P-selectin and E-selectin, can lead to the formation of microthrombi and the obstruction of blood flow. This process is exacerbated by the presence of inflammatory cells, which can further adhere to the endothelium and contribute to the inflammatory milieu. The combined effects of sickling and inflammation create a favorable environment for the development of VOCs, leading to acute pain and organ damage. Inflammation can disrupt vascular homeostasis in individuals with SCA, leading to alterations in blood flow and increased risk of vaso-occlusion. The inflammatory process can induce changes in the vascular endothelium, including increased expression of adhesion molecules and altered nitric oxide (NO) production. Nitric oxide is a critical vasodilator that helps maintain vascular tone and prevent platelet aggregation. Inflammation can impair NO bioavailability, leading to endothelial dysfunction and promoting vasoconstriction. This dysregulation of vascular tone contributes to the occurrence of VOCs by enhancing the likelihood of blood flow obstruction and ischemia.⁴⁶⁻⁵⁴

Implications for Clinical Management

The complexities of sickle cell anemia (SCA), particularly regarding vaso-occlusive crises (VOCs), necessitate a multifaceted approach to clinical management. Given the critical role of inflammation in the pathophysiology of VOCs, strategies that address both the underlying mechanisms of sickling and the inflammatory response are essential for improving patient outcomes. Given the variability in clinical presentations and the influence of genetic factors, treatment strategies for SCA should be individualized based on the specific hemoglobin variant, frequency and severity of VOCs, and the patient's overall health status. For example, individuals with co-inherited hemoglobin variants, such as hemoglobin C (HbC) or hemoglobin E (HbE), may exhibit different clinical courses, requiring tailored interventions. Personalized treatment plans should consider factors such as pain management, hydration strategies, and the use of disease-modifying therapies like hydroxyurea, which can increase fetal hemoglobin (HbF) levels and reduce the incidence of sickling. Effective pain management

is crucial for patients experiencing VOCs. A multimodal approach that combines pharmacologic and non-pharmacologic interventions can help alleviate pain and improve quality of life. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage mild to moderate pain, while opioids may be necessary for severe pain episodes. Additionally, adjuvant therapies, such as physical therapy, cognitive-behavioral therapy, and complementary therapies (e.g., acupuncture or massage), can provide valuable support for patients dealing with chronic pain associated with SCA. Given the role of inflammation in exacerbating VOCs, strategies to manage the inflammatory response are essential. Anti-inflammatory agents, including NSAIDs and corticosteroids, may be beneficial in reducing inflammation during VOCs. Emerging therapies targeting specific inflammatory pathways, such as biologics that inhibit pro-inflammatory cytokines, show promise in improving clinical outcomes. Healthcare providers should be vigilant in monitoring inflammatory markers and adjusting treatment plans accordingly to mitigate the impact of inflammation on the patient's condition.⁵⁵⁻⁵⁸

Maintaining adequate hydration is crucial for preventing VOCs and promoting overall vascular health in individuals with SCA. Dehydration can increase blood viscosity and contribute to sickling, exacerbating the risk of vaso-occlusion. Patients should be encouraged to drink sufficient fluids, particularly during hot weather or illness. Additionally, ensuring proper blood flow and vascular health through measures such as regular physical activity, smoking cessation, and management of comorbid conditions (e.g., hypertension and diabetes) can help reduce the frequency of VOCs and improve long-term outcomes. Patient education plays a vital role in the effective management of SCA. Empowering patients with knowledge about their condition, including the triggers for VOCs and strategies for pain management, can enhance their ability to self-manage and make informed decisions about their care. Educational programs that address the importance of adherence to medications, recognition of early signs of VOCs, and strategies for coping with pain can improve patient engagement and outcomes. Regular monitoring and follow-up care are essential components of managing SCA effectively. Routine evaluations should include assessments of hemoglobin levels, renal function, and the presence of complications such as pulmonary hypertension or avascular necrosis. Establishing a multidisciplinary care team, including hematologists, primary care providers, pain specialists, and mental health professionals, can facilitate comprehensive management and address the various aspects of the disease.⁵⁸⁻⁶⁰

Therapeutic Strategies Targeting Hemoglobin Variants

The management of sickle cell anemia (SCA) has evolved significantly, especially with the increasing understanding of how hemoglobin variants influence the disease phenotype. Therapeutic strategies targeting these variants can help mitigate the complications associated with SCA, particularly vaso-occlusive crises (VOCs). Hydroxyurea is one of the most well-established therapies for SCA. It works by increasing the production of fetal hemoglobin (HbF), which inhibits the polymerization of hemoglobin S (HbS) and reduces the incidence of sickling. Patients with hemoglobin variants such as hemoglobin C (HbC) or hemoglobin E (HbE) may benefit from hydroxyurea, as increased HbF levels can help reduce the severity of VOCs and other complications. Monitoring HbF levels and adjusting the hydroxyurea dose can optimize therapeutic outcomes. L-glutamine is an amino acid that has been shown to reduce the frequency of VOCs in patients with SCA. It acts as an antioxidant and helps to reduce oxidative stress, which is implicated in the pathophysiology of VOCs. This therapy may be particularly beneficial for individuals with co-

inherited hemoglobin variants, as it can enhance overall red blood cell health and function. Therapeutic agents that enhance nitric oxide (NO) signaling, such as inhaled NO or phosphodiesterase inhibitors, may improve vascular function and reduce the occurrence of VOCs. By promoting vasodilation and preventing endothelial dysfunction, these agents can provide additional benefits to patients with SCA, particularly those with hemoglobin variants that alter blood flow dynamics.⁶⁰⁻⁶¹

Recent advancements in gene therapy and gene editing technologies offer promising avenues for treating SCA and its associated complications. These innovative approaches aim to address the genetic basis of hemoglobinopathies directly. Gene therapy strategies involve introducing a functional copy of the β -globin gene into the patient's hematopoietic stem cells (HSCs) to produce normal or modified hemoglobin. For instance, the addition of a therapeutic gene that produces a high level of HbF can help mitigate the effects of HbS, HbC, or HbE. Clinical trials using gene transfer techniques have shown promising results in increasing HbF levels and reducing VOCs. The CRISPR/Cas9 technology allows for precise editing of the genome to correct mutations in the β -globin gene or to activate fetal hemoglobin production. This approach holds great potential for developing curative therapies for SCA. By targeting specific mutations associated with hemoglobin variants, CRISPR/Cas9 can create a genetic profile that reduces the sickling process and associated complications. Patients with SCA and co-existing hemoglobin variants benefit from multidisciplinary care models that address their unique needs. Regular follow-up and monitoring for complications, including acute chest syndrome, pulmonary hypertension, and stroke, are essential for optimizing management. Coordinated care involving hematologists, primary care providers, pain specialists, and mental health professionals can enhance patient outcomes. Empowering patients with knowledge about their condition and treatment options is crucial for successful management. Educational programs should focus on recognizing triggers for VOCs, understanding the importance of hydration and pain management, and adhering to prescribed therapies. Engaging patients in their care can lead to improved health outcomes and enhanced quality of life. Routine screening for complications associated with hemoglobin variants, such as retinopathy, renal dysfunction, and infections, is essential for early intervention. Implementing preventive measures, such as vaccinations and prophylactic antibiotics, can significantly reduce morbidity and mortality in patients with SCA.⁵⁹⁻⁶¹

Conclusion

Sickle cell anemia (SCA) is a complex, multifaceted disorder characterized by the presence of abnormal hemoglobin variants, notably hemoglobin S (HbS), which significantly contribute to the disease's pathophysiology, particularly in the context of vaso-occlusive crises (VOCs). The interplay between hemoglobin variants, inflammation, and vascular function underscores the need for a comprehensive understanding of the disease mechanisms to develop effective therapeutic strategies. Effective management of SCA requires personalized treatment plans that consider the unique genetic background and clinical needs of each patient. A multidisciplinary care model that incorporates regular monitoring, education, and supportive care can further enhance patient outcomes and empower individuals to actively participate in their management. Continued research into the biochemical interactions of hemoglobin variants and the development of novel therapies will play a vital role in improving the prognosis and quality of life for those living with sickle cell anemia.

References

1. Alenzi FQ, AlShaya DS. Biochemical and molecular analysis of the beta-globin gene on Saudi sickle cell anemia. *Saudi Journal of Biological Sciences*. 2019;26(7):1377-1384. <https://doi.org/10.1016/j.sjbs.2019.03.003> PMid:31762599 PMCid:PMC6864391
2. Williams TN, Thein SL. Sickle cell anemia and its phenotypes. *Annual review of genomics and human genetics*. 2018;19(1):113-147. <https://doi.org/10.1146/annurev-genom-083117-021320> PMid:29641911 PMCid:PMC7613509
3. Obeagu EI, Ochei KC, Nwachukwu BN, Nchuma BO. Sickle cell anaemia: a review. *Scholars Journal of Applied Medical Sciences*. 2015;3(6B):224422-52.
4. Obeagu EI. Erythropoietin in Sickle Cell Anaemia: A Review. *International Journal of Research Studies in Medical and Health Sciences*. 2020;5(2):22-28. <https://doi.org/10.22259/ijrsmhs.0502004>
5. Obeagu EI. Sickle Cell Anaemia: Haemolysis and Anemia. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2018;5(10):20-21.
6. Obeagu EI, Muhimbura E, Kagenderezo BP, Uwakwe OS, Nakyeeyune S, Obeagu GU. An Update on Interferon Gamma and C Reactive Proteins in Sickle Cell Anaemia Crisis. *J Biomed Sci*. 2022;11(10):84.
7. Obeagu EI, Ogunnaya FU, Obeagu GU, Ndidi AC. Sickle cell anaemia: a gestational enigma. *European Journal of Biomedical and Pharmaceutical Sciences*. 2023;10((9): 72-75
8. Obeagu EI. An update on micro RNA in sickle cell disease. *Int J Adv Res Biol Sci*. 2018; 5:157-158.
9. Obeagu EI, Babar Q. Covid-19 and Sickle Cell Anemia: Susceptibility and Severity. *J. Clinical and Laboratory Research*. 2021;3(5):2768-2487.
10. Obeagu EI. Depression in Sickle Cell Anemia: An Overlooked Battle. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2023;10(10):41-.
11. Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. *Circulation research*. 2007 Sep 28;101(7):654-662. <https://doi.org/10.1161/CIRCRESAHA.107.158410> PMid:17901370
12. Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states. *American journal of biomedical science & research*. 2022;15(2):153. <https://doi.org/10.34297/AJBSR.2022.15.002087>
13. Obeagu EI, Obeagu GU. Evaluation of Hematological Parameters of Sickle Cell Anemia Patients with Osteomyelitis in A Tertiary Hospital in Enugu, Nigeria. *Journal of Clinical and Laboratory Research*. 2023;6(1):2768-0487.
14. Obeagu EI, Dahir FS, Francisca U, Vandu C, Obeagu GU. Hyperthyroidism in sickle cell anaemia. *Int. J. Adv. Res. Biol. Sci.* 2023;10(3):81-89.
15. Njar VE, Ogunnaya FU, Obeagu EI. Knowledge And Prevalence of The Sickle Cell Trait Among Undergraduate Students Of The University Of Calabar. *Prevalence*;5(100):0-5.
16. Swem CA, Ukaejiwo EO, Obeagu EI, Eluke B. Expression of micro RNA 144 in sickle cell disease. *Int. J. Curr. Res. Med. Sci.* 2018;4(3):26-32.
17. Obeagu EI. Sickle cell anaemia: Historical perspective, Pathophysiology and Clinical manifestations. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2018;5(11):13-15.
18. Obeagu EI, Obeagu GU. Sickle Cell Anaemia in Pregnancy: A Review. *International Research in Medical and Health Sciences*. 2023 Jun 10;6(2):10-13.
19. Obeagu EI, Mohamod AH. An update on Iron deficiency anaemia among children with congenital heart disease. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2023;10(4):45-48.

20. Edward U, Osuorji VC, Nnodim J, Obeagu EI. Evaluation of Trace Elements in Sickle Cell Anaemia Patients Attending Imo State Specialist Hospital, Owerri. *Madonna University journal of Medicine and Health Sciences* ISSN: 2814-3035. 2022 Mar 4;2(1):218-234. <https://doi.org/10.59298/NIJRMS/2023/10.2.1400>

21. Umar MI, Aliyu F, Abdullahi MI, Aliyu MN, Isyaku I, Aisha BB, Sadiq RU, Shariff MI, Obeagu EI. Assessment Of Factors Precipitating Sickle Cell Crises Among Under 5-Years Children Attending Sickle Cell Clinic Of Murtala Muhammad Specialist Hospital, Kano. *blood*;11:16.

22. Obeagu EI. Vaso-occlusion and adhesion molecules in sickle cells disease. *Int J Curr Res Med Sci*. 2018;4(11):33-35.

23. Ifeanyi OE, Stella EI, Favour AA. Antioxidants In The Management of Sickle Cell Anaemia. *Int J Hematol Blood Disord (Internet)* 2018 (cited 2021 Mar 4); 3. Available from: <https://symbiosisonlinepublishing.com/hematology/hematology25.php>. 2018 Sep.

24. Buhari HA, Ahmad AS, Obeagu EI. Current Advances in the Diagnosis and Treatment of Sickle Cell Anaemia. *APPLIED SCIENCES (NIJBAS)*. 2023;4(1). <https://doi.org/10.59298/NIJBAS/2023/1.1.1111>

25. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. *Elite Journal of Haematology*. 2024;2(3):67-80.

26. Obeagu EI, Obeagu GU, Hauwa BA. Optimizing Maternal Health: Addressing Hemolysis in Pregnant Women with Sickle Cell Anemia. *Journal home page: http://www.journalijiar.com*;12(01).

27. Vilas-Boas W, Cerqueira BA, Zanette AM, Reis MG, Barral-Netto M, Goncalves MS. Arginase levels and their association with Th17-related cytokines, soluble adhesion molecules (sICAM-1 and sVCAM-1) and hemolysis markers among steady-state sickle cell anemia patients. *Annals of hematology*. 2010; 89:877-882. <https://doi.org/10.1007/s00277-010-0954-9> PMid:20405289 PMCid:PMC2908460

28. Nnodim J, Uche U, Ifeoma U, Chidozie N, Ifeanyi O, Oluchi AA. Hepcidin and erythropoietin level in sickle cell disease. *British Journal of Medicine and Medical Research*. 2015;8(3):261-265. <https://doi.org/10.9734/BJMMR/2015/17480>

29. Obeagu EI. BURDEN OF CHRONIC OSTEOARTHRITIS: REVIEW OF ASSOCIATED FACTORS. *Madonna University journal of Medicine and Health Sciences*. 2023;3(1):1-6.

30. Aloh GS, Obeagu EI, Okoroiwu IL, Odo CE, Chibunna OM, Kanu SN, Elechukwu Q, Okpara KE, Ugwu GU. Antioxidant-Mediated Heinz Bodies Levels of Sickle Erythrocytes under Drug-Induced Oxidative Stress. *European Journal of Biomedical and Pharmaceutical sciences*. 2015;2(1):502-507.

31. Obeagu EI, Obeagu GU. Sickle Cell Anaemia in Pregnancy: A Review. *International Research in Medical and Health Sciences*. 2023;6 (2):10-13.

32. Obeagu EI, Ogbuabor BN, Ikechukwu OA, Chude CN. Haematological parameters among sickle cell anemia patients' state and haemoglobin genotype AA individuals at Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria. *International Journal of Current Microbiology and Applied Sciences*. 2014;3(3):1000-1005.

33. Ifeanyi OE, Nwakaego OB, Angela IO, Nwakaego CC. Haematological parameters among sickle cell anaemia... Emmanuel Ifeanyi1, et al. pdf• Obeagu. *Int. J. Curr. Microbiol. App. Sci.* 2014;3(3):1000-1005.

34. Obeagu EI, Opoku D, Obeagu GU. Burden of nutritional anaemia in Africa: A Review. *Int. J. Adv. Res. Biol. Sci.* 2023;10(2):160-163.

35. Ifeanyi E. Erythropoietin (Epo) Level in Sickle Cell Anaemia (HbSS) With Falciparum Malaria Infection in University Health Services, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria. *PARIPEX - INDIAN JOURNAL OF RESEARCH*, 2015; 4(6): 258-259

36. Tsikas D. Does the inhibitory action of asymmetric dimethylarginine (ADMA) on the endothelial nitric oxide synthase activity explain its importance in the cardiovascular system? The ADMA paradox. *Journal of Controversies in Biomedical Research*. 2017;3(1):16-22. <https://doi.org/10.15586/jcbmr.2017.22>

37. Martins R, Knapp S. Heme and hemolysis in innate immunity: adding insult to injury. *Current opinion in immunology*. 2018; 50:14-20. <https://doi.org/10.1016/j.coi.2017.10.005> PMid:29107115

38. Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM. Role of L-arginine in nitric oxide synthesis and health in humans. *Amino acids in nutrition and health: Amino acids in gene expression, metabolic regulation, and exercising performance*. 2021:167-87. https://doi.org/10.1007/978-3-030-74180-8_10 PMid:34251644

39. Ifeanyi OE, Nwakaego OB, Angela IO, Nwakaego CC. Haematological parameters among sickle cell anaemia patients in steady state and haemoglobin genotype AA individuals at Michael Okpara, University of Agriculture, Umudike, Abia State, Nigeria. *Int. J. Curr. Microbiol. App. Sci.* 2014;3(3):1000-1005.

40. Ifeanyi OE, Stanley MC, Nwakaego OB. Comparative analysis of some haematological parameters in sickle cell patients in steady and crisis state at michael okpara University of agriculture, Umudike, Abia state, Nigeria. *Int. J. Curr. Microbiol. App. Sci.* 2014;3(3):1046-1050.

41. Ifeanyi EO, Uzoma GO. Malaria and The Sickle Cell Trait: Conferring Selective Protective Advantage to Malaria. *J Clin Med Res*. 2020; 2:1-4. [https://doi.org/10.37191/MapSci-2582-4333-2\(2\)-026](https://doi.org/10.37191/MapSci-2582-4333-2(2)-026)

42. Obeagu EI, Obeagu GU. Oxidative Damage and Vascular Complications in Sickle Cell Anemia: A Review. *Elite Journal of Haematology*, 2024; 2 (3):58-66.

43. Roberts BW, Mitchell J, Kilgannon JH, Chansky ME, Trzeciak S. Nitric oxide donor agents for the treatment of ischemia/reperfusion injury in human subjects: a systematic review. *Shock*. 2013;39(3):229-339. <https://doi.org/10.1097/SHK.0b013e31827f565b> PMid:23358103

44. Obeagu EI, Obeagu GU. Addressing Myths and Stigmas: Breaking Barriers in Adolescent Sickle Cell Disease Education. *Elite Journal of Health Science*. 2024;2(2):7-15. <https://doi.org/10.2147/JBM.S462758> PMid:39081620 PMCid:PMC11288316

45. Obeagu EI, Obeagu GU. Implications of climatic change on sickle cell anemia: A review. *Medicine*. 2024 Feb 9;103(6):e37127. <https://doi.org/10.1097/MD.00000000000037127> PMid:38335412 PMCid:PMC10860944

46. Obeagu EI. Chromium VI: A Silent Aggressor in Sickle Cell Anemia Pathophysiology. *Elite Journal of Haematology*, 2024; 2 (3):81-95.

47. Obeagu EI. Maximizing longevity: erythropoietin's impact on sickle cell anemia survival rates. *Annals of Medicine and Surgery*. 2024:10-97. <https://doi.org/10.1097/MS9.0000000000001763> PMid:38463100 PMCid:PMC10923353

48. Samidurai A, Xi L, Das A, Kukreja RC. Beyond erectile dysfunction: cGMP-specific phosphodiesterase 5 inhibitors for other clinical disorders. *Annual review of pharmacology and toxicology*. 2023;63(1):585-615. <https://doi.org/10.1146/annurev-pharmtox-040122-034745> PMid:36206989

49. Obeagu EI, Ubosi NI, Obeagu GU, Egba SI, Bluth MH. Understanding apoptosis in sickle cell anemia patients: Mechanisms and implications. *Medicine*. 2024;103(2):e36898. <https://doi.org/10.1097/MD.00000000000036898> PMid:38215146 PMCid:PMC10783340

50. Obeagu EI, Ayogu EE, Anyanwu CN, Obeagu GU. Drug-Drug Interactions in the Management of Coexisting Sickle Cell Anemia and Diabetes. *Elite Journal of Health Science*. 2024;2(2):1-9.

51. Obeagu EI, Obeagu GU. Dual Management: Diabetes and Sickle Cell Anemia in Patient Care. *Elite Journal of Medicine*. 2024;2(1):47-56.

52. Obeagu EI, Obeagu GU, Hauwa BA. Optimizing Maternal Health: Addressing Hemolysis in Pregnant Women with Sickle Cell

Anemia. Journal home page: <http://www.journalijiar.com/>;12(01).

53. Obeagu EI, Obeagu GU. Synergistic Care Approaches: Integrating Diabetes and Sickle Cell Anemia Management. Elite Journal of Scientific Research and Review. 2024;2(1):51-64.

54. Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid cell-derived arginase in cancer immune response. *Frontiers in immunology*. 2020; 11:938. <https://doi.org/10.3389/fimmu.2020.00938> PMid:32499785 PMCid:PMC7242730

55. Obeagu EI, Obeagu GU. Improving Outcomes: Integrated Strategies for Diabetes and Sickle Cell Anemia. *Int. J. Curr. Res. Chem. Pharm. Sci.* 2024;11(2):20-9.

56. Obeagu EI, Obeagu GU. The Role of Parents: Strengthening Adolescent Education for Sickle Cell Disease Prevention. *Elite Journal of Public Health*. 2024;2(1):15-21. <https://doi.org/10.2147/JBM.S462758> PMid:39081620 PMCid:PMC11288316

57. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. *Elite Journal of Haematology*, 2024; 2 (3):67-80.

58. Obeagu EI, Obeagu GU. Overcoming Hurdles: Anemia Management in Malaria-Affected Childhood. *Elite Journal of Laboratory Medicine*. 2024;2(1):59-69.

59. Bontempo P, Capasso L, De Masi L, Nebbioso A, Rigano D. Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions. *Nutrients*. 2024;16(15):2399. <https://doi.org/10.3390/nu16152399>

60. Cao M, Zhao Y, He H, Yue R, Pan L, Hu H, Ren Y, Qin Q, Yi X, Yin T, Ma L. New applications of HBOC-201: a 25-year review of the literature. *Frontiers in Medicine*. 2021; 8:794561. <https://doi.org/10.3389/fmed.2021.794561> PMid:34957164 PMCid:PMC8692657

61. Brun M, Bourdoulous S, Couraud PO, Elion J, Krishnamoorthy R, Lapoumeroulie C. Hydroxyurea downregulates endothelin-1 gene expression and upregulates ICAM-1 gene expression in cultured human endothelial cells. *The Pharmacogenomics Journal*. 2003;3(4):215-226. <https://doi.org/10.1038/sj.tpj.6500176> PMid:12931135